Laser assisted engineering of optical fiber

Short and intense light pulses allows adding new properties to optical fibers.

New ways of controlling light in the fiber.

Novel designs for applications in fiber lasers, optofluidics, microscopy, etc.

Dr. Martynas Beresna

m.beresna@soton.ac.uk

Silicon Photonics for System Level Interconnects: Hardware-Software Integration

Keren Bergman Columbia University

- Design and fabrication of nanoscale photonic networks
- Chip-scale packaging
- Integrated software control
- Computing system insertion

Waheb Bishara Physicist, Member of Technical Staff

APPLIED MATERIALS

The world's #1 semiconductor and display equipment company

OUR VISION

Our innovations **make possible** the technology shaping the future

OUR MISSION

To lead the world with **materials engineering** solutions that enable customers to transform possibilities into reality

Manipulating materials at an atomic level on an industrial scale

Thermal

Planarization

Inspection

Etch

Implant

CO₂CAPTECH

Experimental and simulation research for improving the CO₂ capture by chemical/physical absorption processes

Cristian DINCA

• Head of Power Engineering Department

POLITEHNICA Bucharest

- CO₂ capture for energetic and non-energetic systems
- Modelling and simulation of CO₂ chemical/physical absorption processes
- Optimization of the chemical absorption integration in coal fired power plants
- Economical cost of CCS integration in power plants
- Life cycle assessment of energy systems with CCS

Large-Scale Photonic Integrated Circuits and Systems Po Dong, Nokia Bell Labs, Holmdel, NJ 07733, USA

>10, 000 optical elements on silicon photonics wafer

- Provide ultra-high capacity for optical communications and interconnects
- Deliver exponential growth of information communication and computing
- Extend to sensing and imaging applications

CMOS DSP chip to enable advanced modulation

~1Tb/s mm-size optical chip

Bell Labs

Broadband Amplified Spontaneous Emission Optical Fibre Sources

Fig.1. Double core output radiation spectrum at ~2µm and optical fibre construction (inset).

Fig. 2. Double core output radiation spectrum at $\sim 1 \mu m$ and optical fibre construction (inset).

The broad emission is achieved using lanthanides doped multicore, double clad optical fibre constructions.

This light source can be used for science and numerous sensing applications.

Dominik Dorosz, The Polish Young Academy, Polish Academy of Sciences, Poland, e-mail: dominik.dorosz@gmail.com

2016 EU-US Frontiers of Engineering Symposium October 17-19, 2016, Aalto University, Helsinki, Finland

Coordination of Autonomous Vehicles at Intersections

Paolo Falcone

- Problem:
 - Traffic safety
 - Traffic efficiency
- Remedy:
 - Vehicle Automation
 - Wireless Communication
- MPC framework:
 - Optimize intersection usage
 - Enforce safety
- Low complexity algorithm:
 - Efficient communication
 - Real-time feasible
 - Tested in experiments
 - Many possible extensions

Integrated
PhotonicsWhen optics and electronics
are merged on the same chip

Sasan Fathpour University of Central Florida

- Heterogeneous Silicon Photonics
- Optoelectronics
- Photonic Integrated Circuits
- Nonlinear Integrated Optics
- Semiconductor Lasers
- Optical Communications

CREOL, The College of Optics and Photonics, University of Central Florida ipes.creol.ucf.edu

Maria-Chiara Ferrari

Membranes for carbon capture

Carbon Capture group, University of Edinburgh: www.carboncapture.eng.ed.ac.uk

Engineered nonlinear nanoprobes

Second harmonic generation (SHG) in LiNbO₃ subwavelength nanopillar waveguides

• Tailoring the polarization properties of SHG emission

KTH – Royal Institute of Technology M. A. Baghban and K. Gallo, APL Photonics **1** (6), 061302 (2016)

Katia Gallo

Mixed (cars & PTWs) Traffic Modeling

S. Gashaw & J. Harri (EURECOM), P. Goatin (Inria)

PTWs in Smart Cities

- Alleviate congestion, reduce travel time...
- Rapidly growing users on roads
- Most vulnerable road users

Mixed traffic flow involving PTWs

- Limited knowledge on the interaction Cars-PTWs
- Classical homogeneous traffic flow models fail to capture the underlying behaviors

PTWs unique maneuvering behaviors

- Don't follow lane discipline
- Filter between lanes
- Move side by side in the same lane
- Maintain smaller clearance with other vehicles

Approach:

Traffic flow is modeled analogous to
fluid flow in porous medium

Harnessing Light

Novel Processing

ECE Illinois

•FEM -CCMT 1549

SOI wafer fabrication and testing results

Gradable dielectrics Si Increasing N

Slow GaAs etching

Balanced

SiCl

Etchin

Porous Pd with glancing

angle deposition

Photochemical Etching with a Projector

We can define dielectric layers (any n=1.44-3.5) and porous films. We can etch GaAs (1-500nm/s) and make structures with arbitrary topography.

Education/Outreach

Girls' EE camp

Sensors Edge emitting Fiber nano-aperture

PhC

VCSEL

We sense H₂ with Pd coated lasers or fibers.

Wafer defect inspection^{*} *In collaboration with G. Popescu (ECE)

Needle in a haystack: we find

9x100x100nm defects in 1cm²

densely patterned Si chips.

. . y cut at y=0

z cut at z=0

Quantitative phase microscopy^{*} *In collaboration with G. Popescu (ECE)

We measure nanoscale dynamics in semiconductors with comparable accuracy to AFM but 1,000x faster.

Si₃N₄ core fabrication and testing results

We invented a mirror for low noise lasers. We realized single wavelength reflectors R=92.3%, FWHM=0.4nm, and suppression>7.8dB over a 100nm span.

Lynford Goddard (Igoddard@illinois.edu)

III-V QDs Site-controlled Epitaxy as Tool for Nanophotonic Devices

 $\mu\text{-PL}$ image of an ordered QD array

Array of single-photon emitters

(b)

20 nm

[100]

★[011]

Cross-sectional TEM

Mircea Guina

Tampere Univ. of Technology

- GaAs substrate patterning
- High quality InAs QDs
- Control of QD density with periodicity down to 60 nm
- Study of optical properties
- Single-photon emitters
- Plasmonic coupling

QD occupancy vs. pit size