2016 EU-US FOE Poster Titles

Poster #	First Name	Last Name	Poster Title
1	Alexandre	Bayen	Learning how people learn
2	Martynas	Beresna	Laser assisted engineering of optical fiber
3	Keren	Bergman	Silicon Photonics for System Level Interconnects: Hardware-Software Integration
4	Waheb	Bishara	Manipulating materials at an atomic level on an industrial scale
5	Miikka	Dal Maso	Taking emission characterization to the nanometer scale
6	Cristian- Florian	Dinca	Experimental and simulation research for improving the CO2 capture by chemical/physical absorption processes
7	Ро	Dong	Large-Scale Photonic Integrated Circuits and Systems
8	Dominik	Dorosz	Broadband Amplified Spontaneous Emission Optical Fibre Sources
9	Paolo	Falcone	Coordination of Autonomous Vehicles at Intersections
10	Sasan	Fathpour	When optics and electronics are merged on the same chip
11	Maria-Chiara	Ferrari	Membranes for carbon capture
12	Katia	Gallo	Engineered nonlinear nanoprobes
13	Paola	Goatin	Mixed (cars & PTWs) Traffic Modeling
14	Lynford	Goddard	Harnessing Light
15	Mircea	Guina	Site-controlled Epitaxy as Tool for Nanophotonic Devices
16	Thomas	Jaramillo	Catalyzing CO2 conversion into fuels and chemicals: Sustainable processes involving renewable energy
17	Mika	Järvinen	Slag to PCC pilot plant
18	David	Johnson	Atoms & Integrated Photonics
19	Young-Shin	Jun	What key reactions affect the safety and efficacy of geologic CO2 sequestration?
20	András	Kovács	Optimizing a Time-variant Electricity Tariff for Demand Response in Smart Grids
21	Ville	Kyrki	Skills for Robots
22	Ryan	Lively	Can we move beyond thermal-based separation processes?
23	David	Love	Enabling Flexible and Adaptive Broadband Wireless Access
24	Johan	Lundin	Improved access to diagnosis through computer vision, clinical informatics, and artificial intelligence

25	Andreas	Malikopoulos	Understanding Complex Systems in Energy and Transportation
26	Davide	Mattia	Fe@CNT catalysts for CO2 conversion to hydrocarbons
27	Meagan	Mauter	Meeting water & energy demand in a carbon constrained world
28	Mehran	Moazen	Biomechanics of bone and joints
29	Rikky	Muller	Miniaturized and Minimally Invasive Interfaces to the Brain
30	Roger	Narayan	Additive manufacturing for medical applications
31	Jonas	Nilsson	Disarming the Trolley Problem - Why Self-driving Cars do not Need to Choose Whom to Kill
32	Alexander	Orlov	Nanocatalysts to solve energy and environmental problems
33	Carolina	Osorio Pizano	Calibration of large-scale traffic simulators
34	Deepak	PANT	Bioelectrochemical CO2 Reduction to Chemicals: Improved microbial Electrosynthesis using Gas Diffusion electrodes
35	Pavel	Peterka	Fiber lasers and fiber components for 2 µm spectral range
36	Marco	Rolandi	Taking electrons out of bioelectronics: from bioprotonic transistors to shark's electrosensors
37	Pål	Sætrom	Bioinformatics of small non-coding RNAs
38	Constantinos	Samaras	Modeling to inform the transition to automation
39	Adrienne	Stiff-Roberts	Hybrid Organic-Inorganic Materials
40	Sebastian	Teir	Negative CO2 emissions by bio-CLC
41	Leena	Ukkonen	Wireless Identification and Sensing Systems
42	Tejs	Vegge	From CO2 to Sustainable Fuels and Chemicals
43	Christopher	Wilcox	Light-Weight Telescopes and Adaptive Optical Systems
44	Christopher	Wilmer	Fundamental limits of physical adsorption in porous materials
45	Daniel	Work	Quantifying city-scale transport disruptions
46	Robert	Worl	Metamaterials Based Radar for Commercial Detect and Avoid Applications, A New Design Paradigm for Scanning Antennas
47	Alissa	Park	Novel Liquid-like NOHMs-based Electrolyte for Combined CO2 Capture and Conversion