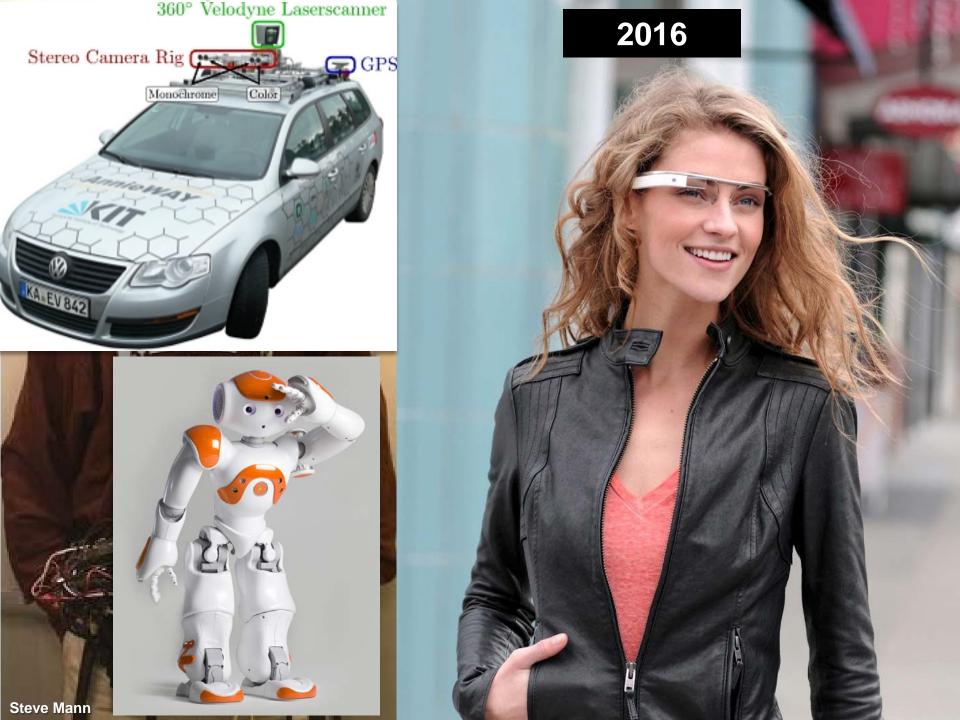
A First Person Perspective on Computational Vision

Kristen Grauman Department of Computer Science University of Texas at Austin

THE UNIVERSITY OF TEXAS AT AUSTIN



New era for first-person vision

Augmented reality

Health monitoring

Law enforcement

Science

Robotics

Life logging

First person vs. Third person

Traditional third-person view

First-person view

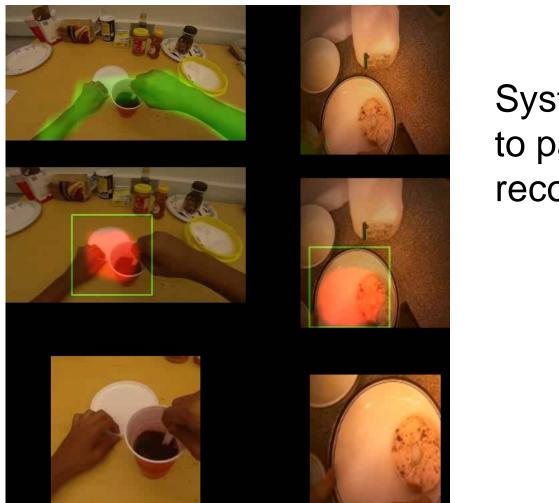
First person vs. Third person

First person "egocentric" vision:

- Linked to ongoing experience of the camera wearer
- World seen in context of the camera wearer's activity and goals

RESULTS FROM THE FIELD

What am I doing?



System learns where to pay attention to recognize activity.

Going Deeper into First-Person Activity Recognition M. Ma, H. Fan, K. Kitani. CVPR 2016 Carne

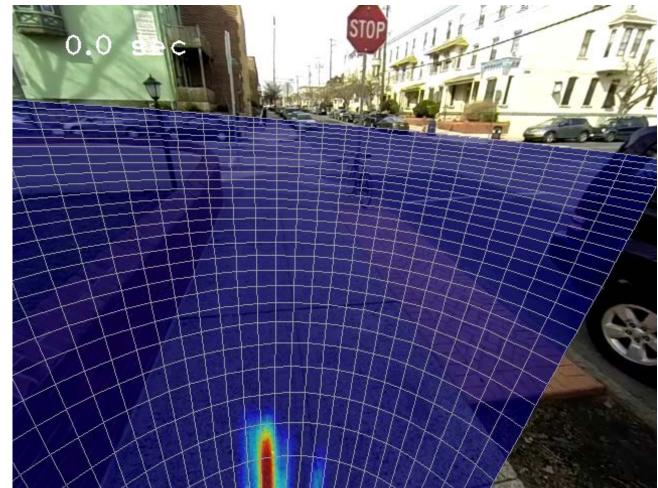
Carnegie Mellon University

What could I do here?

Predict functionality/affordances for regions in environment

Where will I go?

Predict future walking trajectory given video

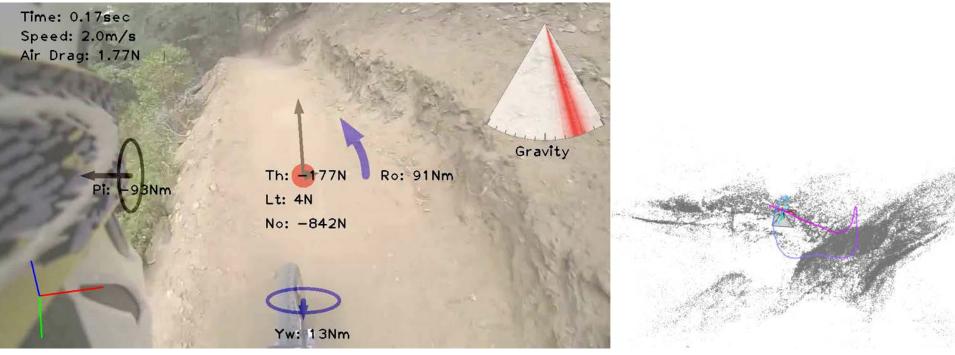


Egocentric Future Localization. H. S. Park, J-J. Hwang, Y. Niu, and J. Shi. CVPR 2016

University of Pennsylvania

What am I experiencing?

First person video reveals physical interactions with surroundings



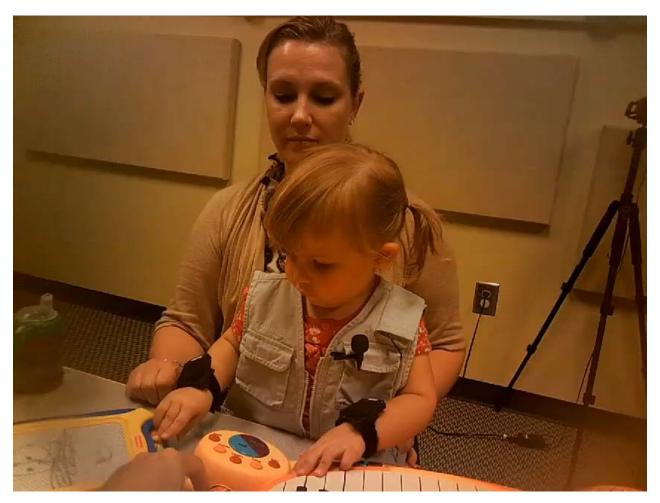
3D reconstruction

Force from Motion: Decoding Physical Sensation from a First Person Video H. S. Park, J-J. Hwang, J. Shi, CVPR 2016

University of Pennsylvania

Where do I look?

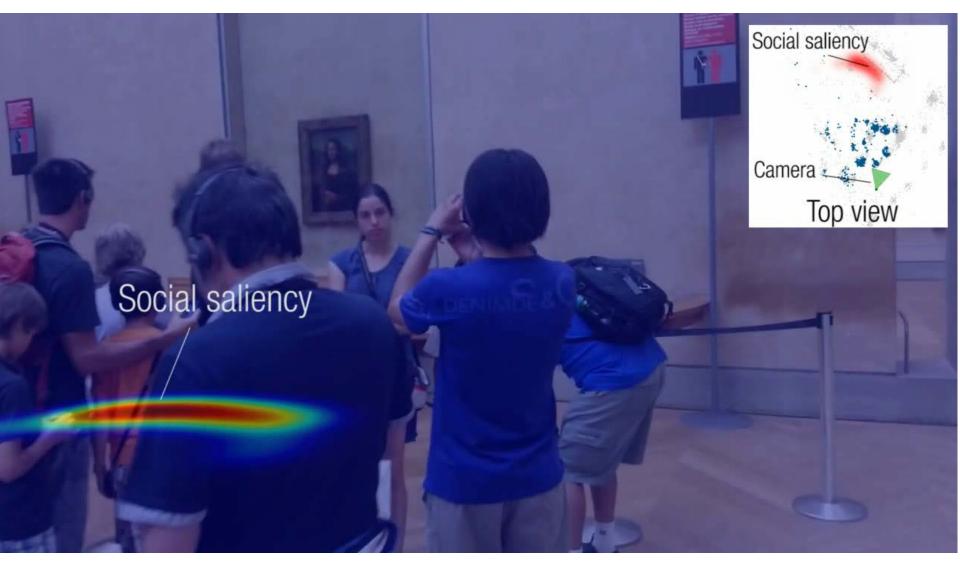
Computational behavior: quantify moments of eye contact



Detecting Bids for Eye Contact Using a Wearable Camera. Z. Ye, Y. Li, Y. Liu, C. Bridges, A. Rozga, and J. Rehg, F&G 2015

Georgia Tech

Where do we look?



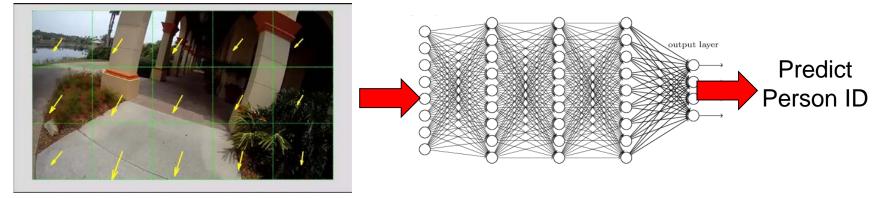
Social Saliency Prediction. H. S. Park and J. Shi. CVPR 2015

University of Pennsylvania

Who am I?

3rd person: Gait

First person video: camera motion reveals camera wearer's identity



An Egocentric Look at Video Photographer Identity, Y. Hoshen and S. Peleg, CVPR 2016 Hebrew University of Jerusalem

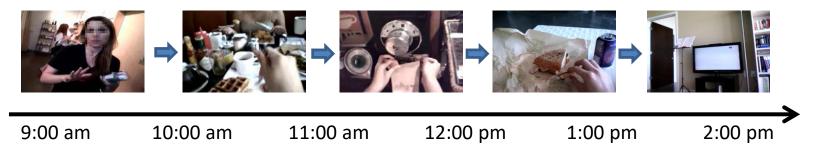
What am I doing? What could I do here? Where will I go? What am I experiencing? Where do I look? Where do we look? Who am I?

RESULTS FROM MY GROUP WHAT HAVE I SEEN?

Our goal: Summarize egocentric video

Wearable camera

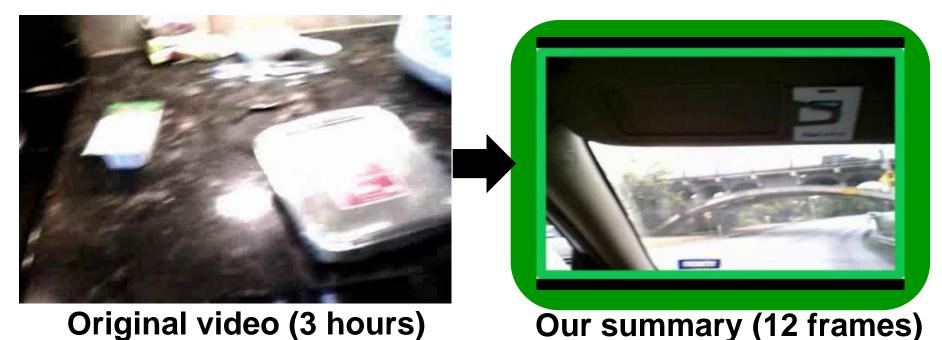
Input: Egocentric video of the camera wearer's day



Output: Storyboard summary

What have I seen?

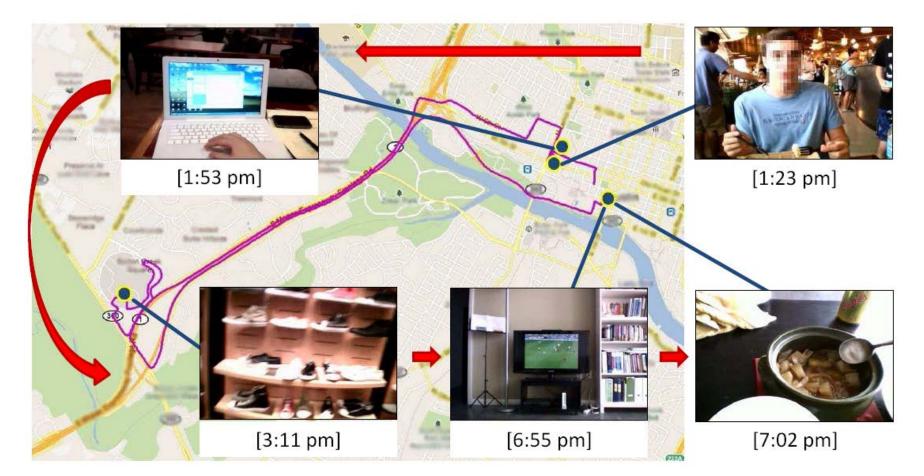
Story-based summaries of first-person videos



Subshots $S^* = \arg \max_{S \subset \mathcal{V}} \lambda_s S(S) + \lambda_i \mathcal{I}(S) + \lambda_d \mathcal{D}(S)$ influence importance diversity
Kristen Grauman, UT Austin

What have I seen?

Auto-generating storyboard maps



Predicting Important Objects for Egocentric Video Summarization. Y J. Lee and K. Grauman. IJCV 2015

What am I doing? What could I do here? Where will I go? What am I experiencing? Where do I look? Where do we look? Who am I? What have I seen?

RESULTS FROM MY GROUP WHAT WILL I SEE, IF I MOVE?

The kitten carousel experiment [Held & Hein, 1963]



Big picture goal: Embodied vision

Status quo:

Learn from "disembodied" bag of labeled snapshots.

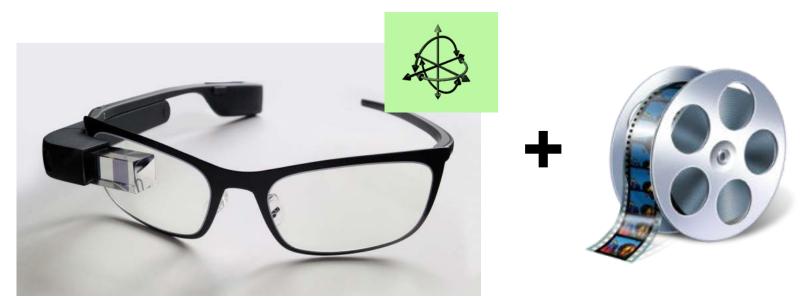


Our goal:

Learn in the context of acting and moving in the world.

Our idea: Ego-motion ↔ vision

Goal: Teach computer vision system the connection: "how I move" ↔ "how my visual surroundings change"



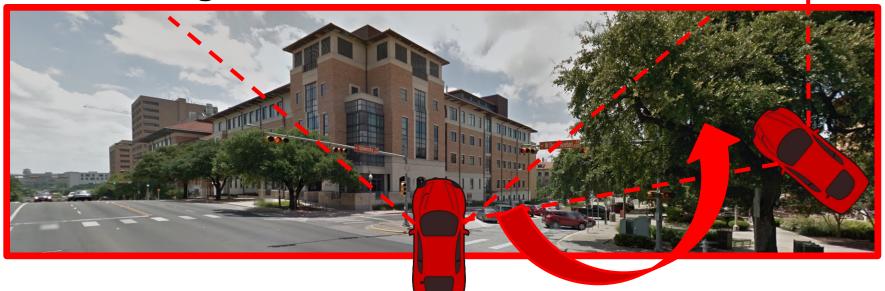
Ego-motion motor signals

Unlabeled video

Learning Image Representations Tied to Ego-Motion. D. Jayaraman and K. Grauman. ICCV 2015

Ego-motion ↔ **vision**: view prediction

After moving:



Ego-motion ↔ **vision** for recognition

Learning this connection requires:

- Depth, 3D geometry
- Semantics
- Context

Also key to recognition!

And can be learned *without* manual annotations!

Our approach: unsupervised feature learning using egocentric video + motor signals

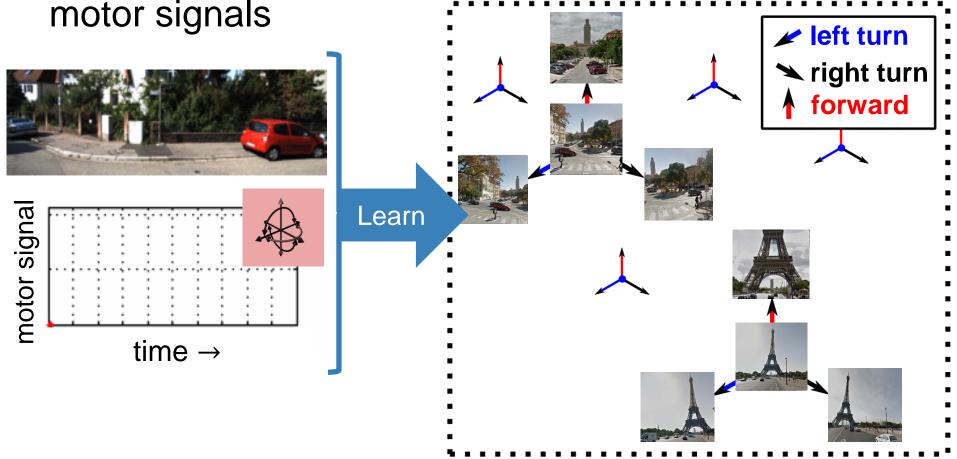
[Jayaraman & Grauman, ICCV 2015]

Approach idea: Ego-motion equivariance

Training data

Unlabeled video + motor signals

Equivariant embedding organized by ego-motions



Result: Recognition

Learn from unlabeled car video (KITTI)

Geiger et al, IJRR '13

Xiao et al, CVPR '10

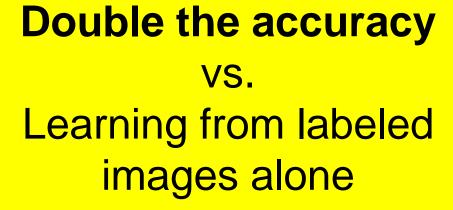
Result: Recognition

Learn from unlabeled car video (KITTI)

Geiger et al, IJRR '13

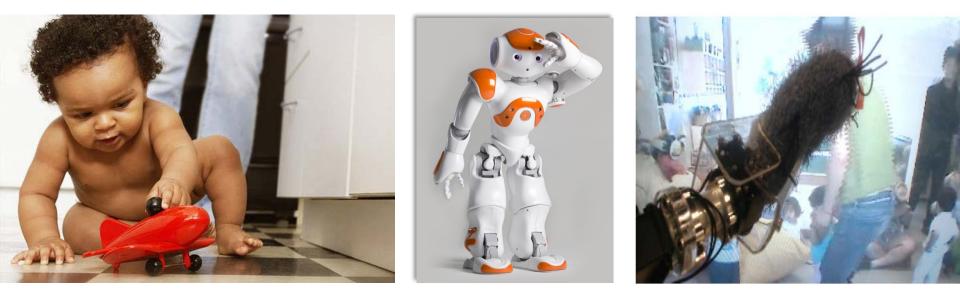
Exploit features for image scene classification

APSO



Xiao et al, CVPR '10

Learning how to move for recognition



Time to revisit active recognition in challenging settings!

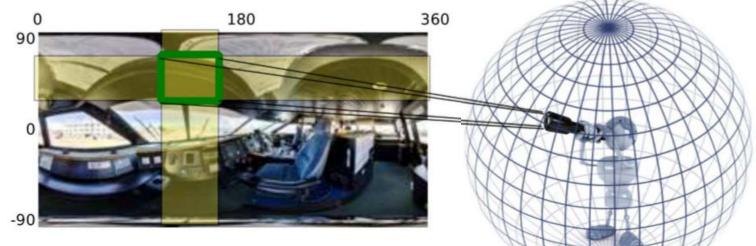
[Bajcsy 1988, Aloimonos et al. 1988, Schiele & Crowley 1998, Dickinson et al. 1997, Wilkes & Tsotsos 1992, Callari & Ferrie 2001,...] Kristen Grauman, UT Austin

Learning how to move for recognition

cupfrying panTime to revisit active recognition in
challenging settings!

[Bajcsy 1988, Aloimonos et al. 1988, Schiele & Crowley 1998, Dickinson et al. 1997, Wilkes & Tsotsos 1992, Callari & Ferrie 2001,...] Kristen Grauman, UT Austin

Learning how to move for recognition



Best sequence of glimpses in 3D scene?

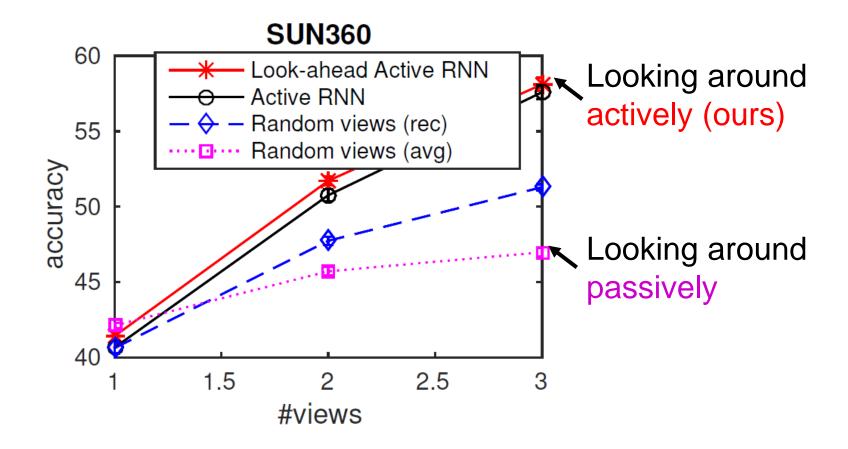
Requires:

- Action selection
- Per-view processing
- Evidence aggregation
- Look-ahead prediction

Look-Ahead Before You Leap: End-to-End Active Recognition by Forecasting the Effect of Motion. D. Jayaraman and K. Grauman. ECCV 2016

Learn all end-to-end

Active recognition: results



Active selection + look-ahead \rightarrow better scene categorization from sequence of glimpses in 360 panorama

Next steps

- Active first-person visual exploration
- Multiple modalities e.g., audio, depth,...
- Streaming computation
- Video summary as an index for search
- Visualization, display

Kristen Grauman

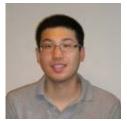
Computer Vision Group

grauman@cs.utexas.edu

http://www.cs.utexas.edu/~grauman/

Summary

- Visual learning benefits from
 - context of action and motion in the world
 - continuous self-acquired feedback
- New ideas:
 - Story-like summaries for "always on" cameras
 - Embodied visual learning and recognition



Yong Jae Lee

Dinesh Jayaraman

