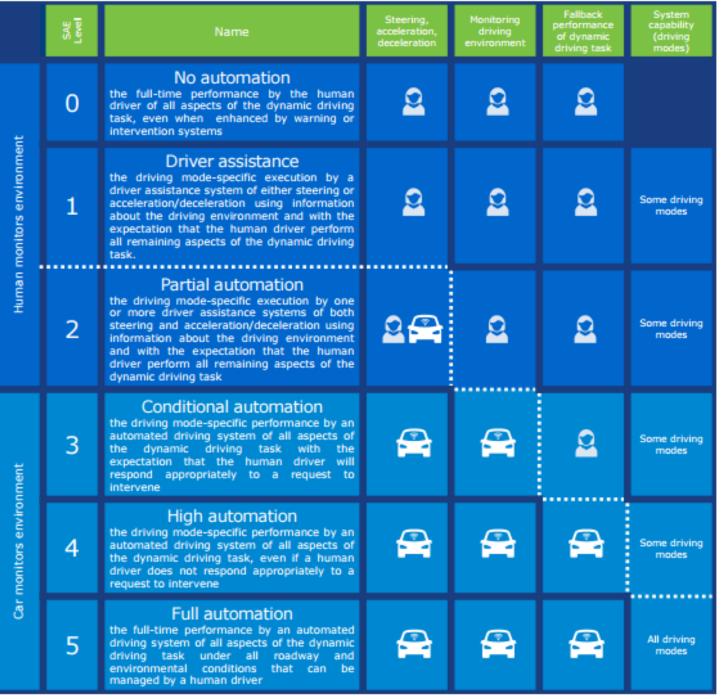
The Future of Transportation: Achieving Equity and Mobility through Self-Driving Vehicles

Japan-America Frontiers of Engineering Symposium

Myra Blanco, Ph.D.

June 16-18, 2016 Beckman Center Irvine, CA Director Center for Public Policy, Partnerships, & Outreach


Overview

- Levels of vehicle automation
- Concept vehicle and transportation system
- Motivating factors for improved transportation
- Potential benefits of self-driving vehicles
- Trends: Transportation in the year 2045
- Opportunities
- Challenges
- VTTI's Automated Vehicle Research

Are we there yet? Are we there yet? Are there yet?

SAE J3016: Taxonomy and **Definitions for Terms Related** to On-Road Motor Vehicle Automated Driving **Systems**

Advancing Transportation Through Innovation

4

Source: Adapted from SAE Standard J3016 (SAE, 2014).

Nissan IDS Concept Technology

- Connectivity
- Mapping
- Machine vision
- 360 recognition
 - Radar, Lidar, other
- Dynamic scheduling
- Pedestrian/cyclist
- Wireless charging lanes/parking
- Transfer of control
- Piloted parking

What's the Future of Transportation?

We need new or extended connections to employment, education, healthcare, and other essential services

Second only to housing, currently transportation costs are the largest expense for American households – costing more than food, clothing, and healthcare (Bureau of Labor Statistics, 2015)

Advancing Transportation Through Innovation

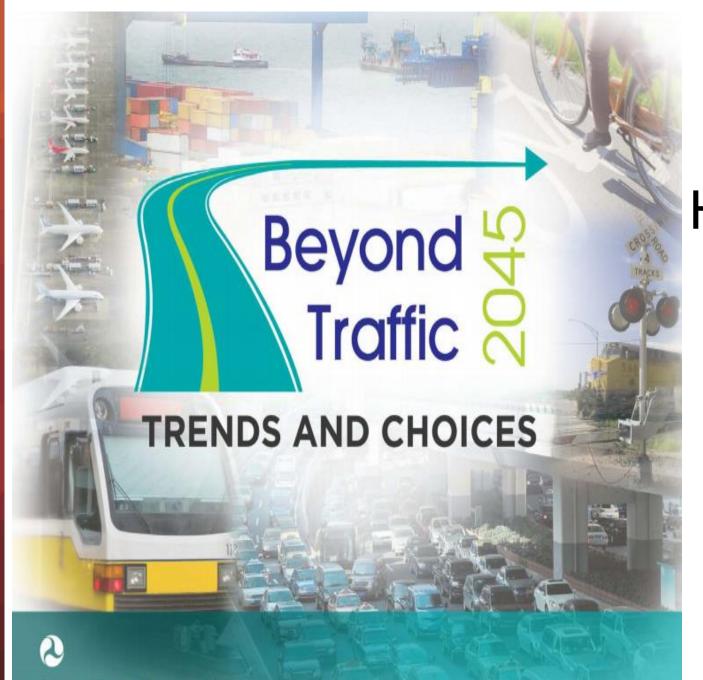
6

Motivating Factors for Improved Transportation

- Communities designed with the car in mind
- Urban sprawl
 - Difficult to get anywhere without a car
 - Highest transportation expenditures
- American Public Transportation Association
 - Small towns and rural communities
 - 2/3 of all residents have limited transportation options
 - 41% of residents have no access to transit
 - 25% have below-average transit services
- Who's living without a car? (Berube, Deakin, & Raphael, 2006)
 - 20% of African-American households
 - 14% of Latino households
 - 13% of Asian households

Advancing Transportation Through Innovation

7


Potential Benefits of Self-Driving Vehicles

Health

- Employment
- Age in place
- Quality of life
- Safety
 - ~32,000 vehicle related fatalities
 - ~5,000 pedestrians and bicyclist

How will the future look if we don't invest in a new transportation system?


Advancing Transportation Through Innovation

U.S. Department of Transportation

Trends: 2045

- Population will grow by 70 million and will have twice the number of seniors
- People will start moving towards megaregions
- Freight will increase by 45% due to online shopping
- People will reduce trips by private car in favor of other modes of transportation
- Consolidation of airline hubs and many mergers will make us rethink traditional travel
- **Robotic** systems will assist with infrastructure maintenance
- **Climate change** will alter sea level, increase temperatures, and develop more frequent and adverse climate events (e.g., hurricanes)

φ 1979 🞽 19.0 M	1PG
• 2016 	34.6 MPG
• 2021	🧧 41.1 MPG

Opportunities for Current and Emerging Self-Driving Vehicle Applications

- Mobility On-Demand
 - Group rapid transit:
 public transportation,
 vanpools, and ridesharing
 - Personal rapid transit:
 personal vehicles, lastmile services (including parking valet alternatives), taxi and on-demand services

Potential Challenges Associated with Implementation

- Legacy vehicles
- Fail-safe & failoperational states
- Safe harbor
- External communications

- Security
- Accessibility
- Multi-jurisdictional collaboration
- Policies

12

Advancing Transportation

Automated Vehicle Research

- Sample studies
 - Human Factors Evaluation of Level 2 and Level 3 Automated Driving Concepts

Automated Vehicle Crash Rate
 Comparison Using Naturalistic Data

Human Factors Evaluation of Level 2 and Level 3 Automated Driving Concepts

Experimental Design

Alert Type (within)	Experiment 2 – L2	
CautionaryStaged	Driving Session (within)	Experiment 3 – L3
• Imminent	Event Type (within) • Alert	Driving Session (within)
Alert Modality (within) • Unimodal	No AlertNo Lane Drift	Alert Type (within) • Staged
Multimodal	Prompt Condition (between)	• Imminent – External Threat
25 participants	• 2-s • 7-s	• Imminent – No External Threat
One 90-min session	• No prompt	25 participants
	56 participants	Three 30-min sessions
	Three 60-min sessions	
Alerting operators to	System prompt	 Human – automation system performance over
regain control	effectiveness over time	time

Key Takeaways

- •Take Over Request
 - Most effective hand-off strategies were those that incorporated nonvisual components
 - Effective countermeasures to primary task reversals when drivers performed non-driving tasks

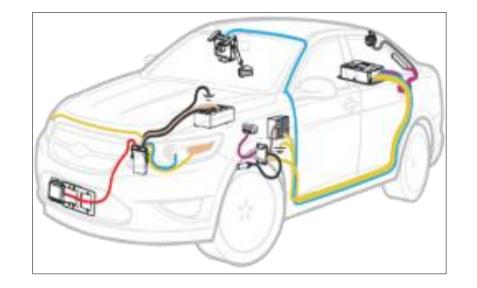
Regain Control

- L2 mean of 1.3 s (S.E. = 0.1 s)
 - Imminent visual and haptic alert
- L3 mean of 2.3 s (S.E. = 0.2 s)
 - Imminent visual plus auditory alert

•Trust

- High trust in automation for both levels of automation but calibrated
 - Trust was reduced after events where something occurred unannounced

Vehicle Automation Theories


- Face 0TS 0TS Forward 4 9 4 2 7 4 1 4 9 4 2 7 4 1 4 9 4 2 7 4 1 4 9 4 2 7 4 1
- Primary Task Reversal

 Alert Annoyance Habituation

Automated Vehicle Crash Rate Comparison Using Naturalistic Data

STRATEGIC HIGHWAY RESEARCH PROGRAM

TRANSPORTATION RESEARCH BOARD

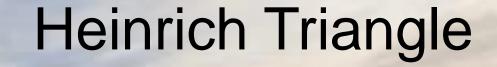
SHRP2

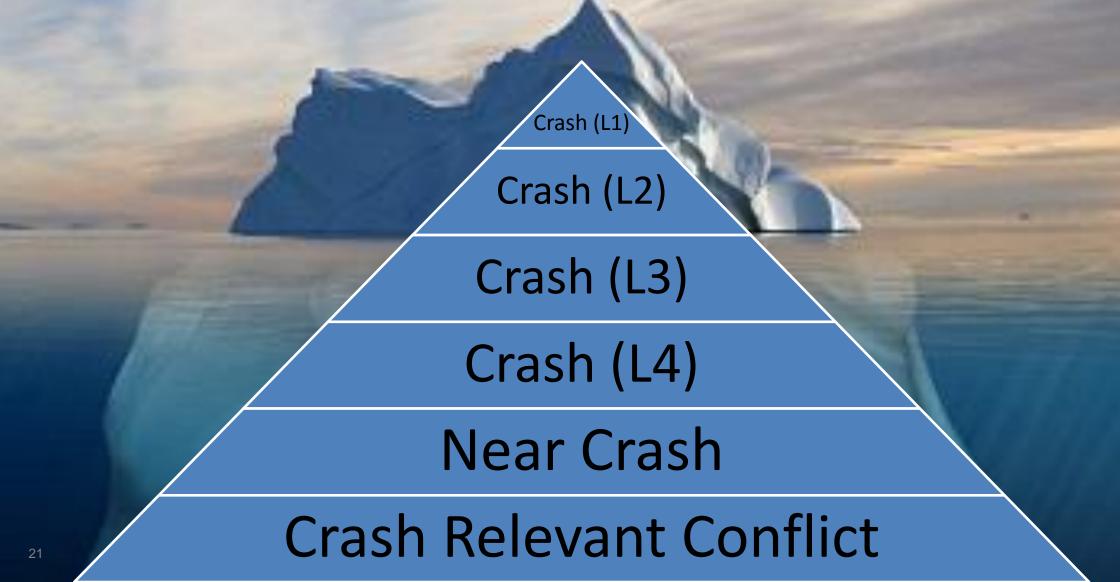
Goægle

Self-Driving Car Project

SHRP 2 Naturalistic Data Study

- 34 million VMT
- 2 petabytes of data
- 3,542 drivers
- > 3,300 vehicles
- > 1,600 crashes
- 4,368 data years
- 5,512,900 trip files

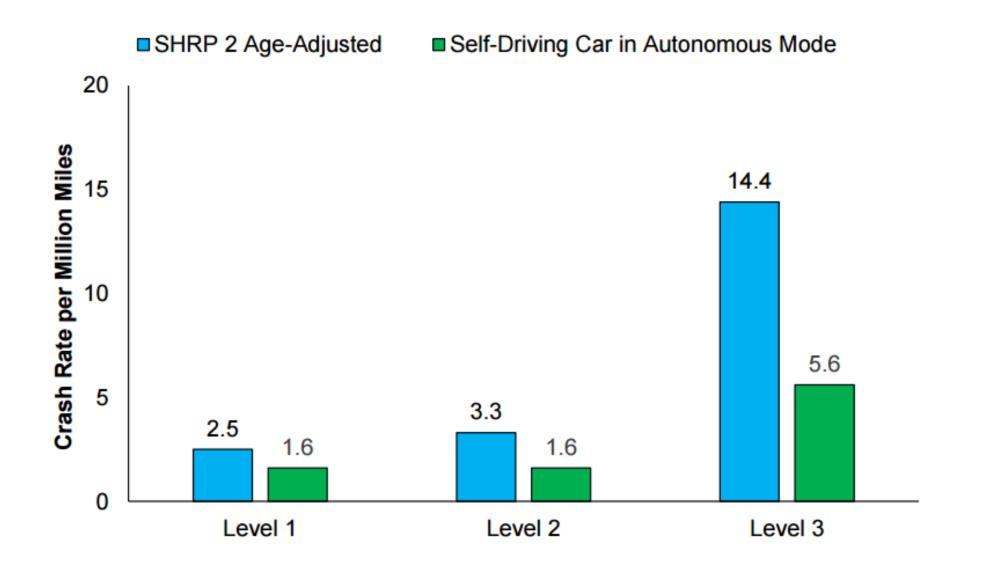




What can 1,000,000 hours of watching and measuring drivers can tell you?

Self-Driving Car Project Data

- Data received for period 2009 - October 31, 2015
 - Mountain View, CA
 - 1,266,611 miles
 - 2010: First crash
 - 2012: First crash in autonomous mode
- 16 Crashes
 - 5 driver in control
 - 11 autonomous
 - None at-fault


Advancing Transportation Through Innovation

22

SHRP 2 and Self-Driving Car Crash Summary

Crash Severity Level	SHRP 2 - Overall	SHRP 2 - with Police Report	Self-Driving Car
Level 1	120	34	2
Level 2	179	12	2
Level 3	633	0	7

Crash Comparison

What else is VTTI doing?

- Policy impact
- Develop advanced testing facilities
- Perform pragmatic research

	Governor Terry McAuliffe Building a New Virginia Economy			
CARP-	About The Governor The Administration Constituent Services Policy Priorities Newsroom	Executive Actio		
Home	Newsroom > Proclamations > Proclamation > Support for Virginia Tech Transportation Institute and Automated and	Autonomous Vehi		
Support fo	r Virginia Tech Transportation Institute and Automated and	Archive		
Autonomous Vehicles				
	ommonwealth of Virginia is on the cusp of the next revolution in the automobile industry with automated vehicles, also known as "self-driving" cars; and			
	ommonwealth has an unparalleled higher education system with world recognized research facilities and a lers in innovation; and			
	ommonwealth is in a position to be a leader in welcoming, supporting and developing the automated vehicle rging technologies used in such vehicles, and the business that will provide the support necessary to make reality; and			
leadership to stud	irginia Tech Transportation Institute Center for Automated Vehicle Systems is providing the necessary Iy all aspects related to automated and autonomous vehicles, and to develop partnerships with groups ching, planning, and producing automated vehicles;			
mission of the Vir studies, and is ope	RE, I, Terence R. McAuliffe, do hereby declare that the COMMONWEALTH OF VIRGINIA supports the ginia Tech Transportation Institute Center for Automated Vehicle Systems and its self-driving on-road on for business for the vehicle and technology manufacturers and researchers committed to the ting and deployment of automated and autonomous vehicles, and I call this observance to the attention of			

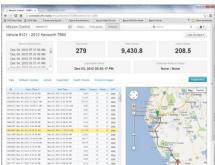
HB 454 Motor vehicles; vehicles not to be equipped with televisions and video within view of driver.

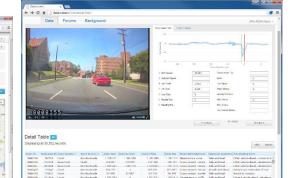
Introduced by: Glenn R. Davis | all patrons ... notes | add to my profiles

SUMMARY AS PASSED: (all summaries)

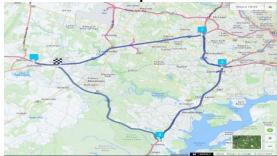
Motor vehicles equipped with television and video. Provides that motor vehicles may be equipped with visual displays of moving images if the equipment is factory-installed and has an interlock device that disables the equipment when the motor vehicle operator is performing a "driving task," which is defined by the bill. Current law allows equipment with a visual display of a television broadcast or signal if the equipment's interlock disables when the motor vehicle is driven. The bill would allow the viewing of a visual display while the vehicle is being operated autonomously. The bill also provides that vehicles used by universities for vehicle technology research are not required to have government plates. This bill is identical to SB 286.

Smart Road Test Track & All-Weather Testing




Virginia International Raceway

NextGen DAS



Virginia Automated Corridor Sample Test Route

Virginia Automated Corridors

Advancing Transportation Through Innovation

26

Questions?

Myra Blanco, Ph.D. mblanco@vtti.vt.edu 540-231-1551

