

Developing a Robust 3D Representation Framework for 3D Printed Materials

National Academies of Engineering Japan-America Frontiers of Engineering Symposium Beckman Center Irvine, CA

16 June 2016

Edwin Schwalbach

Air Force Research Laboratory Materials & Manufacturing Directorate

Integrity ***** Service ***** Excellence

DISTRIBUTION A: Approved for Public Release: distribution unlimited. 1 June 2016 88ABW-2016-2637

Background

Creep

Creep

T=800C

Strength

T=20C

- •Potential benefits of AM include:
 - Rapid turn-around & short lead times
 - Component complexity enabler for topology optimized, organic, & lattice structures
 - Tailored or graded performance & properties, competing requirements

Form – Fit – Function

- •Additive manufacturing (a.k.a. AM, 3D Printing) grew from rapid prototyping *form and fit* were initial focus
- •Use of AM in service requires getting function right

Structural applications have stringent requirements on *function*

Grain size

Strength

Property

Mech. |

Powder Bed Fusion of Metals

Materials Science Primer

•Core Concept:

Processing – Structures – Properties (PSP)

- Performance & properties are dictated by (micro)structure, e.g.: strength \propto size^{$-\frac{1}{2}$}
- Structure is controlled by processing history/pathway: size = f(cooling rate)
- •Materials *engineering* manipulate processing pathway to obtain desirable structure and therefore performance

AM provides unique opportunity to *locally influence* this chain of relationships

Conventional Cast Structure

- Heterogeneity & anisotropy are "the norm"
- •Can be desirable! (extra degree of freedom)
- However, with most conventional processes:
 - Tightly *coupled* to part geometry
 - Influenced by global process parameters
 - Little/no site-specific control

Low temp.

strength

AM can relax (not eliminate) these constraints

Grain size

High temp.

creep resistance

Room temp

Strength

Site Specific (for Better or Worse)

Purposeful or Explicit

IN718 (Nickel) *electron beam powder bed* Careful manipulation of process sequence (and thus thermal history) to achieve grain size & orientation control

OAK RIDGE National Laboratory Site specific control of crystallographic grain orientation through electron beam additive manufacturing

R. R. Dehoff*^{1,2}, M. M. Kirka^{1,2}, W. J. Sames^{1,3}, H. Bilheux⁴, A. S. Tremsin⁵, L. E. Lowe^{1,2} and S. S. Babu^{1,6,7}

Materials Science and Technology 2015 VOL 31 NO 8 931

Unintended or Implicit

Ti-6Al-4V (Titanium) cylinder – *laser powder bed* Interaction of complex scan strategy and part geometry introduces 'artificial' inhomogeneity, Defects frequency varies spatially in accordance

Beam off at internal boundary

AM is site-specific in both purposeful & unintended fashions (typically both!)

- •Mechanical design accounts for 'worst case' behavior, property mins.
- Accepted properties for aerospace materials from "Metallic Materials Properties
 Development and Standardization" handbook (MMPDS)
 (maintained by Battelle Memorial
 - A-basis: 99% of pop. exceeds w/ 95% confidence
 - B-basis: 90% of pop. exceeds w/ 95% confidence
- •Expensive to generate sufficient test data, design with handbook data to avoid case-by-case qual.

Example data header for Ti-6AI-4V

Break out sub-populations

AM Challenge: coupling between site-specific processing & complex geometries \rightarrow SOA for AM is point design

Institute for FAA, DoD)

Property (e.g. Strength)

- •What have we established?
 - Process structure properties relationships critical to ensure function
 - Process varies spatially in 3D
 - Variation can be explicit, implicit, or likely both
- •Where do we want to be?
 - Routinely exploit PSP relationships during design of complex parts (think "AM process sensitive Top.Opt.")
 - Be sensitive to qualification processes/requirements
- •What do we need to get there?
 - A robust 3D framework to capture/describe PSP:
 - Intent/planning information: location specific conditions
 - Execution record: in-situ monitoring data
 - Outcome: post build characterization data
 - Analytics/learning tools to extract actionable information from that data
 - Pathway to feed this info back to design/fab. process

DISTRIBUTION A: Approved for Public Release: distribution unlimited. 1 June 2016 88ABW-2016-2637

D=500µm

Property (e.g. Strength)

DISTRIBUTION A: Approved for Public Release: distribution unlimited. 1 June 2016 88ABW-2016-2637

- Combine/register **planning**, **execution**, & characterization data sets, model outputs
- Challenges:
 - Range of data modalities
 - Disparate spatial and temporal scales
 - Large datasets: ≥1TB per build
- SIMPL: open-source software library for dynamic, ٠ hierarchical management of spatial data DREAM.3D: extensible tool suite for analytics of the internal state of materials, built on SIMPL

Michael Groeber[•] AFRI Mike Jackson, Sean Donegan: BlueQuartz

http://dream3d.blueguartz.net/

From data to actionable information

Example Analytics Pathway

Open Questions

- What are sufficient *reduced order representations* of the local processing state?
 - Brute force: one (small) part has 10⁸ location specific histories with 10⁷ entries each
 - Opportunities for: intelligent/sparse sampling, signal processing techniques, symbolic aggregate approximation, genomics, ...
- How do we establish *which features* of the spatially varying energy input or thermal histories are *relevant* to particular micro and defect structures?
 - Combination of existing processing knowledge/experience with learning techniques
 - Opportunities for: dimensionality reduction, correlation analysis, PCA, CCA, topological data analysis, ...
- How to describe the spatial component of the correlations
 - Describe continuous variation in manageable number of 'zones'
 - Clustering techniques, spatial statistics,
- Given answers to the above, how do we suggest *new* processing pathways that yield desirable spatial variation in processing state/history?

Acknowledgements

Materials & Processing Team

Dr. Jonathan MillerDr. Lee SemiatinDr. Adam PilchakDr. Michael Uchic

Mechanical PropertiesDr. Reji JohnDr. William MusinskiDr. Dennis BuchananWilliam PorterNorman SchehlVilliam Porter

UT Inspection

Dr. Eric Lindgren Norn

Norman Schehl

<u>Students</u>

Jordan Danko Austin Harris Brandon Pfledderer Tyler Weihing Capt. Evan Hanks (AFIT)

<u>X-ray CT</u>

John Brausch David Roberts Nicholas Heider Brian Shivers

ORNL Manufacturing Demo. Facility

Dr. Ryan Dehoff Dr. Brett Compton Michael Goin Dr. Vincent Paquit Larry Lowe Ralph Dinwiddie

