

EMPOWERING OPTICAL TECHNOLOGIES WITH REFRACTORY PLASMONIC CERAMICS

FOCUS

- Nanophotonic functional devices and new physics unlocked by METAMATERIALS and NEW MATERIAL PLATFORMS
- Interconnects/On-chip optics & optoelectronics
- Data recording/storage / Photodetectors
- Sensors / Bio-medical applications
- Energy conversion

CHALLENGES

Plasmonic metamaterial technoligy:

- Large losses in the Vis/NIR
- Lack of tunability/switchability
 - Growth, nanopatterning challenges

High cost - Not CMOS-compatible

APPROACH

 Utilize CERAMIC PLASMONIC MATERIALS: with low loss, tuning/modulation capabilities bio- and CMOS-compatible, high-T stable

KEY OBJECTIVES

- Exploring CONSTITUENT MATERIALS and DESIGNS that offer new functionalities
- Enable flat, large-scale, robust, SCcompatible optical devices
 - Active tuning
 - Reduced optical losses

• Fabrication/integration advantages

APPLICATIONS

- TRANSPARENT CONDUCTING OXIDES
- TTRANSITION METAL NITRIDES

Refractory materials potential:

Wavequide

NFT

Bit-Patterned Medium

- Bio-med/Photothermal therapy
- Heat-assisted magnetic recording (HAMR)
- Solar/Thermophoto taics (S/TPV)

