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hex lattices, 2(NBB � NAA) = 0 at the mixing ratio of
1:1. Both 2(NBB � NAA) and rB/A can deviate from
their perfect honeycomb value upward or downward de-
pendent on the type of defects formed in the crystal lat-
tices. From simulation results, we never obtain perfect
honeycomb lattices and there are always finte amount of
defects. The most ordered honeycomb lattices are ob-
tained by setting EAA = 0. In addtion, the decrease of
EAA also increase the value of 2(NBB �NAA) and rB/A,
which indicates the appearance of defects in the form of
multiple B-B connections. As shown in Figure 7, the in-
crease of EAA always leads to the lower ordering while the
dependence of ordering on EBB is relatively weak. We
also compute the expected energy penalty hEpi for hon-
eycomb lattices, which is equal to EAB � EAA or �0

AB .
This result confirms the strong relation between the de-
fects and the strength of EAA.
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FIG. 7. Phase diagram for binary crystals under the condi-
tion of EAA  EBB and EAB = 1.0, at which honeycomb
crystal lattice is predicted as the stable phase. Three phases
that nucleate and grow from fluid are identified: square lat-
tice (sq), hexagonal lattice (hex) and a transformation region
(trans), in which initially nucleated square lattices undergo
a rapid transformation into hexagonal lattices before contin-
uing to grow further. Two order parameters are computed
for hexagonal phase, NBB �NAA (color) and rB/A (gray), to
quantify the ordering of honeycomb-type hexagonal structure.
Snapshots from MD simulations at three points (A, B, C) of
the phase diagram show di↵erent compositional ordering.

OPTIMIZATION OF BLENDING SCHEME

In this section, we demonstrate that we can formulate
an optimization problem to obtain the optimal blend-
ing scheme to guide the experimental realization of our
programmed crystal phases. The special attension here
foscuses on the self assembly of binary honeycomb lat-
tices.
The orginal problem can be described as follows: we

have two di↵erent particle species A and B, and two com-
plementary DNA sequences ↵ and �. Particle species A
has a strands of ↵-DNA and b strands of �-DNA. Par-
ticle species B has c strands of ↵-DNA and d strands
of �-DNA. We can assume A is the ↵-DNA rich species
and B is the �-DNA rich species without loss of general-
ity. We require EAB > EBB > EAA and minimizing the
value of EAB � EAA by proper blending of two types of
DNA on both type A and B particles.
This problem can be reformulated as nonlinear opti-

mization problem. First we can express the EAB , EBB

and EAA as:

EAB = C⇢A⇢Bexp(��Ghyb/kBT )
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For convenient, we assume the total number of DNA
strands in each particle are roughly same, which means
a+b = c+d and ⇢A = ⇢B . The mathematical formulation
of this problem is simplified as:

minimize
a,b,c,d

ab � cd

subject to ad + bc � 2cd + �,

cd � ab,

a � b,

d � c,

a, b, c, d  1,

a, b, c, d � 0,

a + b = 1,

c + d = 1,

where, a, b, c, d now is the percentage representation and
� is an input variable that controls di↵erences between
EAB and EBB . According to constraints, 0  �  1
should be satisfied. The above constraint nonlinear opti-
mization problem has optimal solution and can be solved
by routine method such as interior point method. If we
assume total number of DNA strands on particle A and
B species are same and � = 0.22, the optimal solution
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