
Rich Vuduc 
School of Computational Science & Engineering

at Georgia Tech

Exascale computing systems 
Developing new parallel algorithms, software, and systems 
to “supercompute” in the quickly, energy-efficiently, and 
reliablyPreprint – To appear in the IEEE Int’l. Parallel & Distributed Processing Symp. (IPDPS), May 2013

A theoretical framework for algorithm-architecture co-design

Kenneth Czechowski, Richard Vuduc
School of Computational Science and Engineering
Georgia Institute of Technology, Atlanta, Georgia

{kentcz,richie}@gatech.edu

Abstract—We consider the problem of how to en-

able computer architects and algorithm designers to

reason directly and analytically about the relationship

between high-level architectural features and algo-

rithm characteristics. We propose a modeling frame-

work designed to help understand the long-term

and high-level impacts of algorithmic and technol-

ogy trends. This model connects abstract commu-

nication complexity analysis—with respect to both

the inter-core and inter-processor networks and the

memory hierarchy—with current technology proposals

and projections. We illustrate how one might use the

framework by instantiating a particular model for a

class of architectures and sample algorithms (three-

dimensional fast Fourier transforms, matrix multiply,

and three-dimensional stencil). Then, as a suggestive

demonstration, we analyze a number of what-if sce-

narios within the model in light of these trends to

suggest broader statements and alternative futures for

power-constrained architectures and algorithms.

I. INTRODUCTION

We seek a formal framework that explicitly re-
lates characteristics of an algorithm, such as its
inherent parallelism or memory behavior, with
parameters of an architecture, such as the number
of cores, structure of the memory hierarchy, or
network topology. Our ultimate goal is to say
precisely and analytically how high-level changes
to the architecture might affect the execution
time, scalability, accuracy, and power-efficiency
of a computation; and, conversely, identify what
classes of computation might best match a given
architecture. Our approach marries abstract al-
gorithmic complexity analysis with key physical
constraints, such as caps on power and die area,
that will be critical in the extreme scale systems of
2018 and beyond [1, 35]. We refer to our approach
as one of algorithm-architecture co-design.

We say “algorithm-architecture” rather than
“hardware-software,” so as to evoke a high-level
mathematical process that precedes and comple-
ments traditional methods based on detailed ar-
chitecture simulation of concrete benchmark code
artifacts and traces [9, 23, 27, 30, 48, 51]. Our ap-
proach takes inspiration from prior work on high-
level performance analysis and modeling [3, 26–

28, 44], as well as the classical theory of cir-
cuit models and the area-time trade-offs studied
in models based on very large-scale integration
(VLSI) [37, 49]. Our analysis is in many ways
most similar to several recent theoretical exascale
modeling studies [22, 47], combined with trends
analysis [34]. However, our specific methods re-
turn to higher-level I/O-centric complexity analy-
sis [4, 5, 10, 13, 21, 54], pushing it further by trying
to resolve analytical constants, which is necessary
to connect abstract complexity measures with the
physical constraints imposed by power and die
area. This approach necessarily will not yield cycle-
accurate performance estimates, and that is not our
aim. Rather, our hope is that a principled algorith-
mic analysis that accounts for major architectural
parameters will still yield interesting insights and
suggest new directions for improving performance
and scalability in the long run.

A formal framework. We pose the formal co-
design problem as follows. Let a be an algorithm
from a set A of algorithms that all perform the
same computation within the same desired level
of accuracy. The set A might contain different
algorithms, such as “A = {fast Fourier trans-
form, F-cycle multigrid},” for the Poisson model
problem [17, 41]. Or, A may be a set of tuning
parameters for one algorithm, such as the set of
tile sizes for matrix multiply. Next, let µ be a
machine architecture from a set M , and suppose
that each processor of µ has an area of �(µ).
Lastly, let T (n; a, µ) be the time to execute a on
µ for a problem of size n, while using a maximum
instantaneous power of �(µ). Then, our goal is to
determine the algorithm a and architecture µ that
minimize time subject to constraints on total power
and processor die area, e.g.,

(a⇤, µ⇤
) = argmin

(a2A, µ2M)
T (n; a, µ) (1)

subject to

�(µ⇤
) = �max (2)

�(µ⇤
) = �max, (3)

1

CPU

GPU

0.1 0.60.70.80.9
1

0.1

0.2 0.20.3 0.30.4 0.40.5

CPU

GPU

0.1

0.7
0.8

0.9
1

0.1

0.2

0.2

0.3

0.3

0.4
0.5

0.6

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75

M
atM

ult
3D

 FFT

0 32 64 96 128 160 192 224 256 288 320 352 384
Cache size (MiB)

M
em

or
y 

ba
nd

w
id

th
 (T

B/
s)

hpcgarage.org

http://hpcgarage.org

