The Office of the National Coordinator for Health Information Technology

NOAR

RTMENT O

Challenges of Engineering Cybersecurity: Government Perspective

Tomas Vagoun Cybersecurity R&D Coordinator

NITRD (Program)

Purpose

- The primary mechanism by which the U.S. Government coordinates its unclassified <u>Networking and IT R&D (NITRD)</u> investments
- Supports NIT-related policy making in the White House Office of Science and Technology Policy (OSTP)
- Established by the High-Performance Computing Act of 1991

Scope

- Approximately \$4B/year across 16 agencies, seven program areas
- Cyber Security and Information Assurance (CSIA)
- Human Computer Interaction and Information Management
- High Confidence Software and Systems
- High End Computing
- Large Scale Networking
- Software Design and Productivity
- Social, Economic, and Workforce Implications of IT and IT Workforce Development

CSIA R&D Budgets (Unclassified) in NITRD

Selected Agencies		Cyber Security & Information Assurance (CSIA) R&D (Unclassified)	
	FY 2014 Actual	FY 2016 Requests	
DARPA	\$265M	\$298M	
OSD, DoD Service Research Organizations	\$182M	\$156M	
NSF	\$103M	\$112M	
DHS	\$78M	\$69M	
NIST	\$62M	\$73M	
DOE	\$31M	\$30M	
Total	\$721M	\$738M	

Source: "NITRD Supplement to the President's Budget FY 2016," https://www.nitrd.gov/pubs/2016supplement/FY2016NITRDSupplement.pdf

Challenge

Given limited/finite financial resources, what should be the goals for Federal Government's basic research in cybersecurity?

Underlying Cybersec Deficiencies

Systems are static and homogeneous

Users take actions in absence of verified trust

Weak capabilities to measure, assess, and maintain SW security

Cybersecurity is substantially an economic, social, and behavioral issue → Great ROI on attack reuse

→ We don't know when we've been had

Security fix-loop is slower than attack development-loop: always one (n) steps behind attackers

Technical fixes may not be the most effective solutions

Need game-changing, not incremental solutions

TRUSTWORTHY CYBERSPACE: STRATEGIC PLAN FOR THE FEDERAL CYBERSECURITY RESEARCH AND DEVELOPMENT PROGRAM

Se

Executive Office of the President National Science and Technology Council

DECEMBER 2011

- Research Themes
 - Tailored Trustworthy Spaces
 - Moving Target
 - Cyber Economic Incentives
 - Designed-In Security
- Science of Cyber Security
- Support for National Priorities
- Transition to Practice

http://www.whitehouse.gov/blog/2011/12/06/fed eral-cybersecurity-rd-strategic-plan-released

Strategic Plan Research Themes

- Moving Target
 - Providing resilience through agility
- Tailored Trustworthy Spaces
 - Supporting context specific trust decisions
- Designed-In Security
 - Developing secure software systems
- Cyber Economic Incentives
 - Providing incentives to good security
- Science of Security
 - Improving our understanding of fundamentals that underpin cybersecurity

Moving Target Defense

Monoculture Problem

- Identical systems → same attack disables all systems
- Unchanging systems → same attack works repeatedly

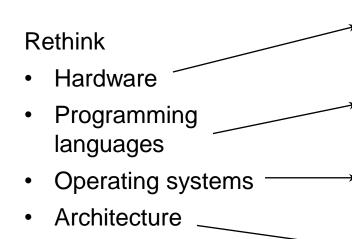
Need dynamic diversity that makes systems unique and increases work for attackers

Long Repair-Cycle Problem

- Long lead time to patch
- Patch cycle is slower than attack development cycle

Need adaptation

Biology to the rescue?


Biology Inspiration for Security

Fortress	Biological
Impenetrable (hopefully) barrier with unprotected inside	Many partial and overlapping barriers
Monolithic	Heterogeneous
Rigid	Adaptation is a core mechanism
Need perfect components	Fallible components
Design reflects scarcity of resources	Abundance of resources
Evolutionary pressure: price- performance tradeoff	Evolutionary pressure: survivability
No system-wide survivability	Diversity for population survival, evolution

Example: DARPA CRASH Program

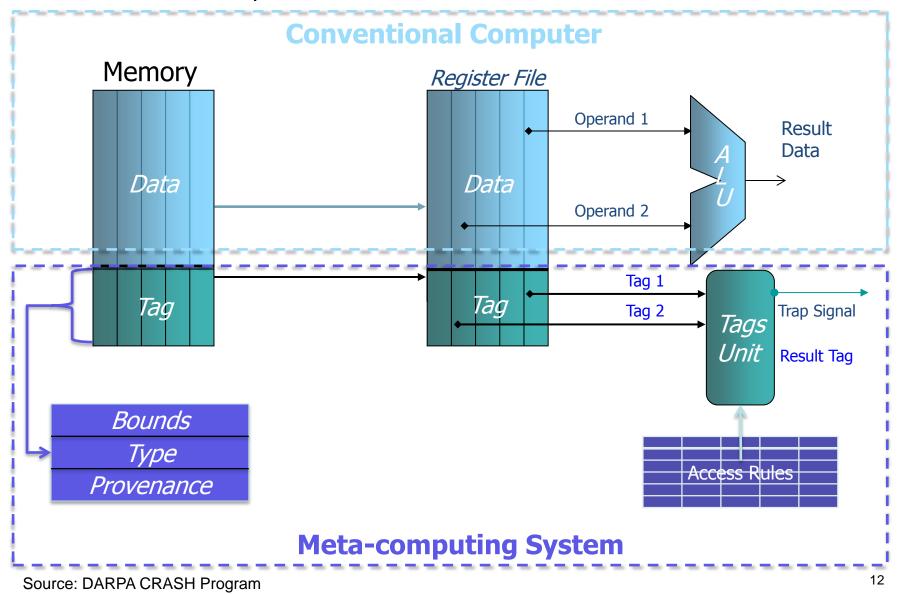
Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) Program

- Rethink computing systems \rightarrow immune systems inspiration
- Design systems that can adapt and continue providing services after an attack, learn from attacks, and repair themselves

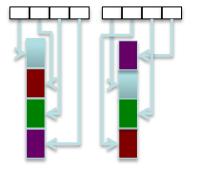
Tag every piece of data and enforce access restriction on data in HW

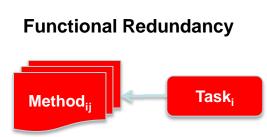
Incorporate rules about information flows and access rights

Enforce security properties specified in the code

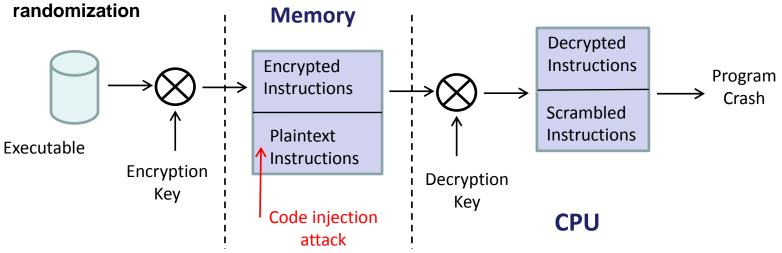

Redesign OS as independent modules suspicious of each other

Cybersecurity Problem	Biological Approach	DARPA CRASH
Systems are easily penetrated	Innate immunity: fast reacting defenses to known pathogens	New hardware and OS that eliminate common vulnerabilities
Repair is costly	Adaptive immunity: slower reacting defenses to unknown pathogens + Adaptation	Adaptive software that determines causes of vulnerabilities and dynamically repairs flaws
Computing homogeneity: large pool of targets, large ROI for attackers	Diversity: sustains population survival	Techniques that increase entropy, make systems unique, and raise work factor for attackers: instruction set randomization, address space randomization, functional redundancy


DARPA CRASH Innate Immunity: An Example Hardware Solution



Dynamic Diversity Examples


Address space layout randomization

Dynamic diversification techniques make systems look the **same** to the users but vary low-level details that attackers exploit, making each system look **different** to the attackers.

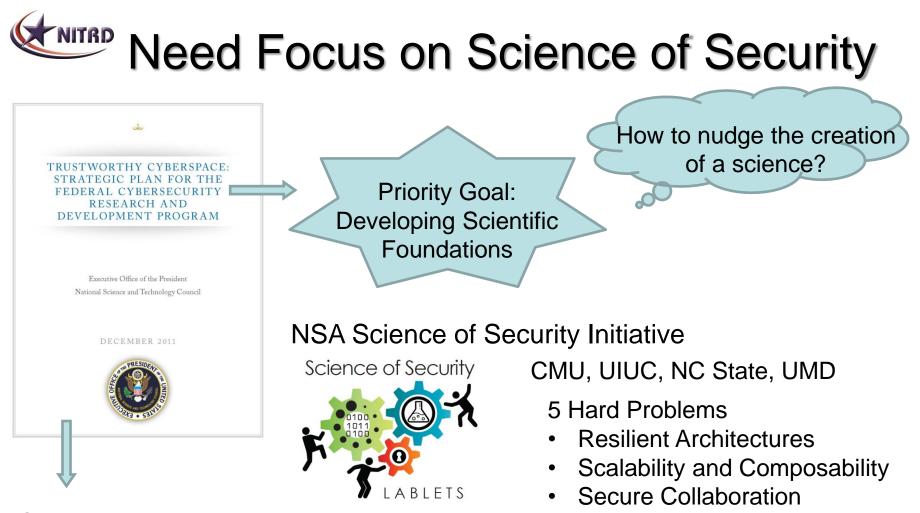
Instruction set

Moving Target Defense: Challenge

/ITD Dimension	Examples of MTD Techniques	Agility	
Systems of Systems	Virtualization, Cloud Computing, Machine Rotations	Diversity Redundancy Support overhead	
Data	Secure Distributed Data Chunking, Self-aware Data	Decreased attack ROI Additional work for attackers	
Networks	IP Hopping, Dynamic DSN, Dark IP Space		
Software	Diversity in Software, Just-in- time Compiling		
System	Instruction Set Randomization, Address Space Layout Randomization, OS Diversity	- = Better Securi	
Hardware	Hardware Diversity, Multi- core Processing	 Do we understand: Costs (complexity) vs. Benefits (security) Measurements of security benefits? 	

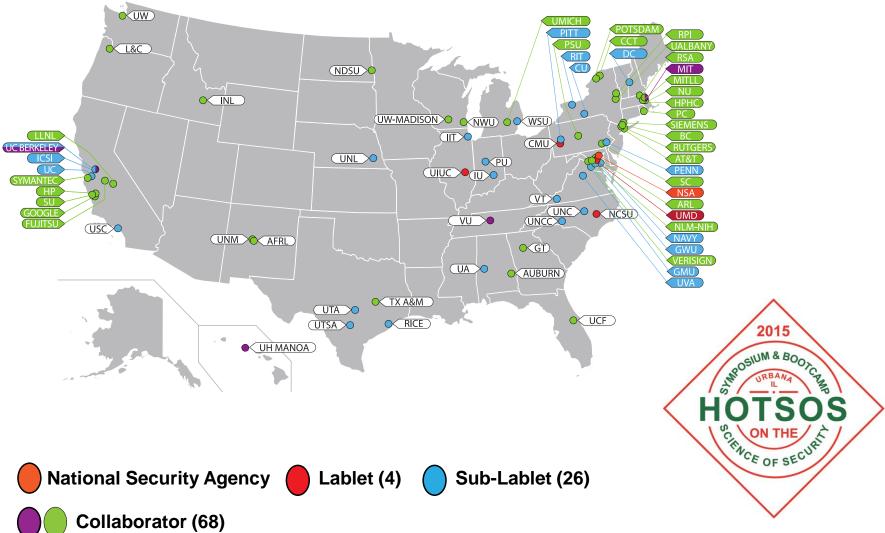
• Provable security properties?

FROM: Patch & Pray



TO:

Standardized metrics Repeatable experiments Hypothesis testing Engineering Science



Other examples:

AFOSR: Science of Cyber Security MURI ARL: Science for Cyber Portfolio program OSD: Cyber Measurement Campaign

- Metrics
- Human Behavior

Science of Security Growing Community

Advancing Science of Security

Annual NSA Competition

http://cps-vo.org/group/SoS

Take-Aways

Identify Problems

Systems are static and homogeneous

Users take actions without verified trust

Security is often added-on, not built-in

Cybersecurity is also an economic, social, and behavioral issue

Execute USG R&D Strategy


Moving Target (Defense)

Tailored Trustworthy Spaces

Designed-In Security

Cyber Economic Incentives I Want You To Help Build Game-Changing Cybersecurity Solutions

Innovate

Strengthen Science and Engineering

Some Useful Links

- Report on Implementing the Federal Cybersecurity Research and Development Strategy (2014)
 - <u>http://www.nitrd.gov/PUBS/ImplFedCybersecurityRDStrategy-June2014.pdf</u>
- Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research and Development Program (2011)
 - <u>http://www.nitrd.gov/SUBCOMMITTEE/csia/Fed_Cybersecurity_</u>
 <u>RD_Strategic_Plan_2011.pdf</u>
- NITRD Supplement to the President's Budget (FY 2016)
 - <u>https://www.nitrd.gov/pubs/2016supplement/FY2016NITRDSupplement.pdf</u>

Contact Information

Tomas Vagoun, PhD Cybersecurity R&D Technical Coordinator

National Coordination Office for Networking and Information Technology Research and Development Suite II-405, 4201 Wilson Blvd. Arlington, VA 22230 Tel: (703) 292-4873 vagoun@nitrd.gov

http://www.nitrd.gov