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[Credit: http://news.discovery.com/space/toyota-tundra-to-tow-shuttle-endeavour-121013.htm] 
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Largest Available Today Future 
Size Benefits of Going Bigger 

Telescopes JWST 
primary 6.5 m 3x Better Resolution 

Sun Shields JWST sun 
shield 22 m n/a Cooler Optics 

Star Shades Exo-S 
Starshade 34 m 10x Directly Image More Planets  

Solar Sails Sunjammer 20 m 50x Higher Propulsion Thrust 

Antennas SkyTerra-1 
reflector 22 m 9x Smaller Ground Antennas 

Radar RadarSat-II 15 m 30x Track more Objects 

Photovoltaic 
Arrays 

Rigid panel 
array 47 m2 30x Higher Power 

Why Large Structures In Space? 
To Manipulate the Electromagnetic Spectrum 
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 Microwave         Visible 
   

Precision is Challenging 
Surface Figure Errors Scale with Aperture Size 
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Getting to Orbit is Challenging 
Rockets are Volume and Mass Limited 

SkyTerra-1  
22 m 

Falcon 9 
53 m tall 

Atlas V 
60 m tall 

Delta IV 
70 m tall 

State of Practice 
(rank order for structural performance) 

Deployed  
Size 

Stowed 
Size 

Packaging 
Ratio 

JWST Primary 6.5 m 4.0 m 1.6:1 

Exo-S Starshade 34 m 5.0 m 9:1 

SkyTerra-1 mesh Reflector 22 m 2.4 m 9:1 

NG Telescopic Tube 33 m 2.4 m 14:1 

ATK Graphite Coilable Boom 40 m 0.4 m 100:1 

Graphite STEM 17 m 0.3 m 57:1 

Images shown to 
relative scale 

Maximum available diameter 
and mass for payload is about 
5 meters and 3000 kg to GEO 

JWST 
6.5 m 

Exo-S Shade 
34 m 

Launch is violent! 
• ~50x Earth’s gravitational 

accelerations (50 g’s) 

• 0 to 7 km/s in 10 minutes 

Ariane 5 
50 m tall 

Boeing 737-400 
33 m x 29 m 
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Deployment Reliability and  
Affordability are Challenging 

 

 

 

 

    
  

Zero-gravity deployments are approximated 
with elaborate suspension cable systems. 

In-space thermal-vacuum environment is 
simulated by large chambers. 

Space flight programs have one chance at success, ideal to 
test as you would fly—$billions are on the line 

MegaFlex by NASA, Orbital ATK Worlds largest chamber: 100ft x 120ft; NASA GRC  
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Current Technologies are  
Leading Us to “Astronomical” Costs 

JWST Next Gen 1 Next Gen 2 
Diameter, D (meters) 6.5 9.2 20 
Development Cost* $8.7B $12.5B $47.5B 
Development Time 16 yrs 23 yrs 87 yrs 

JWST (launch 2018) 
6.5 meters 
$8.7B 

Next Gen 1 
9.2 meters 
$12.5B 

*Mission cost parameter [Credit: Jon Arenberg, NGS23] 

Next Gen 2 
20 meters 
$47.5B 
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Emerging Approaches: 
d 

1) High Strain Composite Mechanisms 
2) Tension-Aligned Apertures 
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MOIRE 20 meter 
diffractive optic 

Keck 
10 m 

(ground-based) 

JWST 
6.5 m 

Hubble 
2.4 m 

6 segments of a 5 meter diffractive 
optical aperture ground demo 
[Credit: Ball Aerospace and DARPA MOIRE] 

Alternative to Reflective Optics:  
Tension-Aligned Transmissive Optics  

Incoming 
Light 

Fresnel Zone Plate 

How it Works 

images  
to scale 
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Half-Scale Deployment Test-bed 

[Credit: JPL] 
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JPL Ground Demo Starshade 
Also Tension-Aligned 

Petals need sub-millimeter 
accuracy across 34 meters 

Error Source Required Tolerance 

Petal Segment Shape (Random) ±68 μm 

Petal Segment Position (Random) ± 45 μm 

Radial Petal Position (Bias) ± 150 μm 

Credit: JPL 
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AFRL FURL Solar Sail 
AFRL FURL DEPLOYMENT VIDEO 
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Flexible Unfurlable Refurlable Lightweight Solar Sail 
Tension-Aligned, High Strain Composite Deployment 

10m2 Polyimide film 

Composite  
Inner Spar 

Outer Spar 

TRAC Mast 

Stowed FURL 

[U.S. Patent 8,356,774] 

[U.S. Patent 7,895,795] 
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Definition:  Thin traditional laminates constructed from high strength carbon unidirectional and biased weave 
reinforced resins. Ultimate strains are 2-3x higher than metals.  The resin systems are typical aerospace grade.  

High strain hinge  
[45 PW, 0, 45 PW] 
folded to 2% strain 

High Strain Composites 
An Alternative to Traditional Pin-Clevis Mechanisms 

Typical friction-sensitive 
pin-clevis hinge. 

[Credit: AFRL Powersail] 

Foldable 
reflector shell 

[credit: AFRL] 

Carbon Storable Tubular 
Extendible Member [credit: AFRL] 

Articulated 
SRTM mast,  

60 meters. 
[credit: Orbital ATK] ST8 mast achieved 100:1 

packaging [credit: NASA, Orbital ATK] 

ISAT truss 
achieved 
110:1 
packaging 
[credit: AFRL, 
DARPA] 

Heritage Mechanisms High Strain Composite Mechanisms 

12 m AstroMesh [credit: Northrop Grumman] 
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Application 
Earth 

Surveillance 
Earth/Space 
Surveillance,  
Earth science 

Earth/Space 
Surveillance, 
Astronomy 

Earth/Space 
Surveillance, 
Astronomy 

Launcher 6U Cubesat ESPA Minotaur-C Falcon Heavy 

Mass (kg) 10 150 < 1,500 < 10,000 

Aperture OD (m) 0.7 2.5 7.5 20 

Aperture 
Segment 

4 @ 10 x 20 cm 4 @ 50 cm 16 @ 100 cm 12 @ 100 x 10 cm 

Images not to scale 

Deployable In Space Coherent Imaging Telescope by MIT Lincoln Labs 

Sparse Aperture Telescopes 
Another example of high strain composites 

Foldable support struts are 
dimensionally stable,  

repeatable in deployment, 
and fold to high strains 
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An Ongoing Debate  
and a method to evaluate the merits 

Does it make sense to embrace in-space 
construction techniques (now)? 

SpiderFab proposes to combine 
additive manufacturing with 
robotic assembly to construct 
structures in space.  
[Credit: Tethers Unlimited and 
NASA] 

“Using the automated orbital assembly of a small 
number of self-deployable subsystems would be a 
prudent approach of a large sized operational system”  
 – Bob Freeland, Richard Helms, Martin Mikulas (2006) 

“Additive manufactured space 
structures can be much lighter 
because they don’t need to endure 
launch loads and ground testing.” 

“First we must fully exploit 
the performance potential of 
self deployable structures 
and high strain composites.” 

Robotic Assembly? 
Additive Manufacturing? 

Self Deployment? 

What about the COST and 
COMPLEXITY of robotics? 

How precise are the 
payload-structure 

ITERFACES? 
How will we VALIDATE in 
a relevant environment on 

the ground? 

“Just build bigger rockets.” 

“Forget large structures, use formation 
flying of sparse apertures instead.” 
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Metric Description Equation Units (SI) 

Packaging 
Efficiency deployed length / stowed length 

Ld
Ls  m/m 

Linear Packaging 
Density deployed size / stowed volume 

D
V m/m3 

Areal Packaging 
Density deployed area / stowed volume 

A
V m2/m3 

 

Beam Performance 
Index17 

Strength moment, bending 
stiffness, linear mass density N3/5 m9/5 / kg 

Solar Array Scaling 
Index18 

acceleration load, frequency, boom 
quantity, length, area, blanket areal 
mass density, total mass 

m2.374 /  
(kg0.824 s0.648) 

Aperture Mass 
Efficiency diameter / mass 

D
m m/kg 

Aperture Surface 
Precision diameter / RMS figure error 

D
RMS m/m 

Dimensional 
Stability coefficient of thermal expansion α 1/°C 

Telescope Mission 
Cost Parameter 22,23 

diameter, wavelength, temperature 
of operation  -- 

Evaluate with Metrics 
How does the new approach compare to heritage? 

0.176
0.216 0.231 0.755 b

pb(af ) n L A
m

γ
κ =

( )1 52M EI
w
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Large Structures in Space are Challenging! 
Where Do We Go From Here? 

“It seems that perfection is attained not when there is nothing 
more to add, but when there is nothing more to remove.” 
 --Antoine de Saint Exupéry, 1939 26 

Lean into these new approaches: 
1) Tension-aligned apertures and compression support structures 
2) High strain composite mechanisms 
3) Evaluate in-space manufacturing with metrics 

Pursue answers to these questions: 
1) What is mechanical complexity and how do we measure it (early)? 
2) What causes unreliable deployments in strain-energy structures? 
3) How might we qualify a strain-energy structure by analysis? 

Invent and develop new technologies: 
1) Thin materials that are dimensionally stable, tough, and flexible 
2) Flexible electronics that are radiation tolerant 
3) Analysis and test tools to characterize high strain composite materials 

[credit: American Semi] 

AFRL compact telescope 
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