

Integrity **★** Service **★** Excellence

Realizing Large Structures in Space

National Academy of Engineering 2015 US Frontiers of Engineering 9-11 September 2015 Irvine, California

Jeremy A. Banik, Ph.D. Space Vehicles Directorate Air Force Research Laboratory Kirtland AFB, NM

[Credit: http://news.discovery.com/space/toyota-tundra-to-tow-shuttle-endeavour-121013.htm]

United States 🥌

10

Why Large Structures In Space?

To Manipulate the Electromagnetic Spectrum

	Largest Available Today		Future Size	Benefits of Going Bigger	
Telescopes	JWST primary	6.5 m		3x	Better Resolution
Sun Shields	JWST sun shield	22 m	NGAS	n/a	Cooler Optics
Star Shades	Exo-S Starshade	34 m	JPL	10x	Directly Image More Planets
Solar Sails	Sunjammer	20 m	L'Garde	50x	Higher Propulsion Thrust
Antennas	SkyTerra-1 reflector	22 m	Harris	9x	Smaller Ground Antennas
Radar	RadarSat-II	15 m	CMDA	30x	Track more Objects
Photovoltaic Arrays	Rigid panel array	47 m ²	Boeing	30x	Higher Power

Precision is Challenging

Surface Figure Errors Scale with Aperture Size

Getting to Orbit is Challenging

Rockets are Volume and Mass Limited

 <u>Launch is violent!</u> ~50x Earth's gravitational 	State of Practice (rank order for structural performance)	Deployed Size	Stowed Size	Packaging Ratio
accelerations (50 g's)	JWST Primary	6.5 m	4.0 m	1.6:1
• 0 to 7 km/s in 10 minutes	Exo-S Starshade	34 m	5.0 m	9:1
Maximum available diameter	SkyTerra-1 mesh Reflector	22 m	2.4 m	9:1
5 meters and 3000 kg to GEO	NG Telescopic Tube	33 m	2.4 m	14:1
	ATK Graphite Coilable Boom	40 m	0.4 m	100:1
	Graphite STEM	17 m	0.3 m	57:1
	Images shown to relative scale			
Delta IV Atlas V Falcon 9 Ariane 5 70 m tall 60 m tall 53 m tall 50 m tall	JWST Exo-S Shade 6.5 m 34 m	SkyTe 22	erra-1 B m	oeing 737-400 33 m x 29 m

Deployment Reliability and Affordability are Challenging

Space flight programs have one chance at success, ideal to test as you would fly—\$billions are on the line

Zero-gravity deployments are approximated with elaborate suspension cable systems.

Worlds largest chamber: 100ft x 120ft; NASA GRC

In-space thermal-vacuum environment is simulated by large chambers.

	JWST	Next Gen 1	Next Gen 2
Diameter, D (meters)	6.5	9.2	20
Development Cost*	\$8.7B	\$12.5B	\$47.5B
Development Time	16 yrs	🗸 23 yrs 🗖	87 yrs

*Mission cost parameter [Credit: Jon Arenberg, NGS²³]

Emerging Approaches:

1) High Strain Composite Mechanisms 2) Tension-Aligned Apertures

Half-Scale Deployment Test-bed

Demonstration of starshade development model

[Credit: JPL]

DISTRIBUTION A. Approved for Public Release 377ABW-2015-0705.

JPL Ground Demo Starshade

Also Tension-Aligned

Error Source	Required Tolerance
Petal Segment Shape (Random)	±68 μm
Petal Segment Position (Random)	± 45 μm
Radial Petal Position (Bias)	± 150 μm

Petals need sub-millimeter accuracy across 34 meters

AFRL FURL DEPLOYMENT VIDEO

High Strain Composites

An Alternative to Traditional Pin-Clevis Mechanisms

<u>Definition</u>: Thin traditional laminates constructed from high strength carbon unidirectional and biased weave reinforced resins. Ultimate strains are **2-3x** higher than metals. The resin systems are typical aerospace grade.

Heritage Mechanisms

Typical friction-sensitive pin-clevis hinge. [Credit: AFRL Powersail]

Articulated SRTM mast, 60 meters. [credit: Orbital ATK]

High Strain Composite Mechanisms

High strain hinge [45 PW, 0, 45 PW] folded to 2% strain

Foldable reflector shell [credit: AFRL]

le ell L]

Carbon Storable Tubular

packaging [credit: NASA, Orbital ATK]

ISAT truss achieved 110:1 packaging [credit: AFRL, DARPA]

Sparse Aperture Telescopes

Another example of high strain composites

Deployable In Space Coherent Imaging Telescope by MIT Lincoln Labs

Foldable support struts are dimensionally stable, repeatable in deployment, and fold to high strains

Application	Earth Surveillance	Earth/Space Surveillance, Earth science	Earth/Space Surveillance, Astronomy	Earth/Space Surveillance, Astronomy
Launcher	6U Cubesat	ESPA	Minotaur-C	Falcon Heavy
Mass (kg)	10	150	< 1,500	< 10,000
Aperture OD (m)	0.7	2.5	7.5	20
Aperture Segment	4 @ 10 x 20 cm	4 @ 50 cm	16 @ 100 cm	12 @ 100 x 10 cm

An Ongoing Debate

and a method to evaluate the merits

Does it make sense to embrace in-space construction techniques (now)?

Robotic Assembly?

Self Deployment?

"Using the automated orbital assembly of a small number of self-deployable subsystems would be a prudent approach of a large sized operational system" – Bob Freeland, Richard Helms, Martin Mikulas (2006)

What about the COST and COMPLEXITY of robotics?

How will we VALIDATE in a relevant environment on the ground? How precise are the payload-structure ITERFACES?

Additive Manufacturing?

"Additive manufactured space structures can be much lighter because they don't need to endure launch loads and ground testing."

> "First we must fully exploit the performance potential of self deployable structures and high strain composites."

> > "Just build bigger rockets."

"Forget large structures, use formation flying of sparse apertures instead."

SpiderFab proposes to combine additive manufacturing with robotic assembly to construct structures in space. [Credit: Tethers Unlimited and NASA]

Evaluate with Metrics

How does the new approach compare to heritage?

Metric	Description	Equation	Units (SI)
Packaging Efficiency	deployed length / stowed length	$\frac{L_d}{L_s}$	m/m
Linear Packaging Density	deployed size / stowed volume	$\frac{\mathrm{D}}{\mathrm{V}}$	m/m ³
Areal Packaging Density	deployed area / stowed volume	$\frac{A}{V}$	m ² /m ³
Beam Performance Index ¹⁷	Strength moment, bending stiffness, linear mass density	$\mu = \frac{\left(\mathbf{M}^2 \mathbf{E} \mathbf{I}\right)^{1/5}}{\mathbf{w}}$	$N^{3/5} m^{9/5}$ / kg
Solar Array Scaling Index ¹⁸	acceleration load, frequency, boom quantity, length, area, blanket areal mass density, total mass	$\kappa = (af)^{0.216} n^{0.231} L_{pb} A^{0.755} \frac{\gamma_b^{0.176}}{m}$	$m^{2.374}/(kg^{0.824}s^{0.648})$
Aperture Mass Efficiency	diameter / mass	$\frac{D}{m}$	m/kg
Aperture Surface Precision	diameter / RMS figure error	D RMS	m/m
Dimensional Stability	coefficient of thermal expansion	α	1/°C
Telescope Mission Cost Parameter ^{22,23}	diameter, wavelength, temperature of operation	$MC = \frac{C D^{1.7} \lambda^{-0.3} T^{-0.25}}{0.11 + 0.09 \ln(D)}$	

Large Structures in Space are Challenging! Where Do We Go From Here?

Lean into these new approaches:

- 1) Tension-aligned apertures and compression support structures
- 2) High strain composite mechanisms
- 3) Evaluate in-space manufacturing with metrics

Pursue answers to these questions:

- 1) What is mechanical complexity and how do we measure it (early)?
- 2) What causes unreliable deployments in strain-energy structures?
- 3) How might we qualify a strain-energy structure by analysis?

Invent and develop new technologies:

- 1) Thin materials that are dimensionally stable, tough, and flexible
- 2) Flexible electronics that are radiation tolerant
- 3) Analysis and test tools to characterize high strain composite materials

AFRL compact telescope

[credit: American Semi]

"It seems that perfection is attained not when there is nothing more to add, but when there is nothing more to remove." --Antoine de Saint Exupéry, 1939²⁶

References (1 of 2)

- 1. NASA JPL. March 2015. Exoplanet Direct Imaging Mission Concept Final Report: Exo-S Starshade Probe-Class. Available at http://exep.jpl.nasa.gov/stdt/Exo-S_Starshade_Probe_Class_Final_Report_150312_URS250118.pdf
- 2. Feinberg, L., Clampin, M., Keski-Kuha, R., Atkinson, C., Texter, S., Bergeleand, M., Gallagher, B., "James Webb Space Telescope optical telescope element mirror development history and results," Proceedings SPIE 8442, Space Telescopes and Instrumentation 2012, 22 August 2012.
- Freeland, R., Helms, R., Mikulas, M., "The Applicability of Past Innovative Concepts to the Technology for New Extremely Large Space Antenna/Telescope Structures," 36th International Conference on Environmental Systems (ICES), Society of Automotice Engineers, 2006-01-2063. Norfolk, VA. 17-20 July 2006.
- 4. Banik, J., Ardelean, E., "Verification of a Retractable Solar Sail in a Thermal-Vacuum Environment," 51st AIAA Structures, Structural Dynamics and Materials Conference, Orlando, Florida. AIAA-2010-2585, 12-15 April, 2010.
- 5. J. Welsh, J. Mayes, and A. Biskner, "Experimental and Numerical Failure Predictions of Biaxially-Loaded Quasi-Isotropic Carbon Composites,"16th International Conference on Composite Materials, ICCM, 2007
- 6. Murphey, T., Peterson, M., Griegoriev, M., "Four Point Bending of Thin Unidirectional Composite Laminas," 54th AIAA SDM Conference, AIAA-2013-1668, April 9, 2013. Boston, Massachusetts.
- 7. Murphey, T., Francis, W., Davis, B., "High Strain Composites," 2nd AIAA Spacecraft Structures Conference, Kissimmee, Florida, AIAA 2015-0942, 5-9 January, 2015.
- 8. Footdale, J., Banik, J., "Design and Deployment Testing of the Multi-Arm Radial Composite (MARCO) Reflector Antenna," 3rd AIAA Spacecraft Structures Conference, San Diego, California, 4-8 January, 2016. TO APPEAR
- 9. Jeon, S., Banik, J., Peterson, M., "Design and Validation of a Deployable Isogrid Optical Baffle," 3rd AIAA Spacecraft Structures Conference, San Diego, California, 4-8 January, 2016. TO APPEAR
- 10. Silver, M., Reid, B., Martinez, R., Banik, J., "Precision High Strain Composite Hinges for the Deployable In-Space Coherent Imaging Telescope," 3rd AIAA Spacecraft Structures Conference, San Diego, California, 4-8 January, 2016. TO APPEAR.
- 11. Warren, P., Steinbeck, J., Minelli, R., Mueller, C., "Large, Deployable S-Band Antenna for a 6U Cubesat," 29th AIAA/USU Conference on Small Satellites, SSC15-VI-5. Logan, Utah. 2015.
- 12. Warren, P., Dobson, B., Silver, M., "Experimental Characterization of an Extremely High Expansion Deployable Gossamer Structure," 48th AIAA SDM Conference, AIAA-2007-1839, 23-26 April 2007. Honolulu, Hawaii.

References (2 of 2)

- 13. Footdale, J., Murphey, T., "Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs", Proceedings of the 42nd Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center, May 14-16, 2014.
- 14. Murphey, T., Banik, J., Reynolds, W., Stiles, L., "Deployable Shell with Wrapped Gores," United States Patent 8,462,078. 2013
- 15. Banik, J., Murphey, T., "Performance Validation of the Triangular Rollable and Collapsible Mast" 24th AIAA/USU Conference on Small Satellites, SSC10-II-1. Logan, Utah. 2010.
- 16. Spence, B., White, S. Takeda, R., LaPointe, M., Schmid, K., Kiefer, S., Carter, G., Paskin, A., Allmandinger, T., Douglass, M., LaCorte, P., "Flexible Blanket Solar Arrays: Next-Generation Game-Changing Technology," 42nd IEEE Photovoltaic Specialist Conference, 17 June 2015, New Orleans, LA.
- 17. Murphey, T., "Booms and Trusses," Recent Advances in Gossamer Spacecraft, edited by C. H. M. Jenkins, *Progress in Astronautics and Aeronautics*, Vol. 212, AIAA, Reston, VA, 2006, pp. 1–43
- 18. Banik, J., Carpenter, B., "Analytic Representation of Space Solar Array Scaling Performance," 42nd IEEE Photovoltaic Specialist Conference, New Orleans, LA, 14-19 June 2015..
- 19. Space News, "NASA: James Webb Space Telescope to Now Cost \$8.7 Billion," Leone, D., 27 August 2011, Available at http://www.space.com/12759-james-webb-space-telescope-nasa-cost-increase.html
- 20. Domber, J., Atcheson, P., Kommers, J., "MOIRE: Ground Test Bed Results for a Large Membrane Telescope," 1st AIAA Spacecraft Structures Conference, National Harbor, Maryland, AIAA 2014-1510, 13-17 January, 2014.
- 21. Lane, S., Murphey, T., Zatman, M., "Overview of the Innovative Space-Based Radar Antenna Technology Program," AIAA Journal of Spacecraft and Rockets. Vol. 48, No. 1, January–February 2011. pp. 135-145.
- 22. Stahl, H.P., Henrichs, T., Leudtke, A., West, M., "Update on Multi-variable Parametric Cost Models for Ground and Space Telescopes," Proceedings of SPIE Vol. 8442. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 21 September 2012.
- 23. Arenberg, J., Atkinson, C., Breckinridge, J., Conti, A., Feinberg, L., Lillie, C., MacEwen, H., Polidan, R., Postman, M., Matthews, G., Smith, E., "A New Paradigm for Space Astrophysics Mission Design," SPIE Astronomical Telescopes and Instrumentation, Montréal, Quebec, Canada. Paper 9143-36. 22-27, June 2014.
- 24. Hedgepeth, J., "Accuracy Potentials for Large Space Antenna Reflectors with Passive Structures," AIAA Journal of Spacecraft and Rockets. Vol. 19 No. 3. May-June 1982. pp. 211-217.
- 25. Hedgepeth, J., Mikulas, M., Macneal, R., "Practical Design of Low-Cost Large Space Structures," AIAA, 1978. pp. 30-34.
- 26. Antoine de Saint Exupéry, "Wind, Sand and Stars." New York: Reynal & Hitchcock, 1939. pp 60.