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Hurricanes, through their strong winds, heavy rainfall, and storm surges, cause much damage 
and loss of life worldwide. Recent disasters, including Hurricanes Katrina in 2005 and Sandy 
in 2012, Cyclone Nargis in 2008, and Typhoon Haiyan in 2013, underscore the significant 
vulnerability of the U.S. and the world to landfalling hurricanes. The impacts of these storms 
may worsen in the coming decades because of rapid coastal development coupled with sea 
level rise and possibly increasing hurricane activity due to climate change. Thus, major 
advances in hurricane risk management are urgently needed. Given the inherent uncertainties 
in hurricane activity, hurricane risk management should be strongly informed by probabilistic 
risk assessment. Furthermore, hurricane risk assessment cannot rely solely on the historical 
records: to account for the future changes, the risk assessment should integrate physical 
knowledge/models with observational data.    

A physically-based probabilistic hurricane risk assessment framework should 
integrate the analysis of storm activity, hazards, and risk. Due to the limitation of historical 
records and the complexity of the problem, Monte Carlo (MC) methods, based on numerous 
synthetic simulations, are often applied. In a MC approach, large numbers of synthetic but 
physically possible storms, characterized by their various track, intensity, and size, are 
simulated (with their frequencies/probabilities estimated), under observed or climate-model 
projected future climate conditions. Hazard models are then used to estimate the wind, surge, 
and rainfall flooding associated with the simulated storms, with the probabilistic description 
of the hazards (e.g., return periods) obtained. Given the estimated hazards and coastal 
exposure, vulnerability models can be applied to estimate the storm-induced consequences 
(e.g., damage and/or economic losses) and thus the risk. The risk assessment can inform risk 
management from various perspectives to achieve coastal resiliency. In the following 
sections, we discuss about the main components of such a risk assessment framework and its 
application to evaluating risk mitigation strategies. 
 
Hurricane activity 
Various MC methods have been developed to simulate synthetic storms to depict hurricane 
activity and climatology. Most of these methods (e.g., Vickery et al. 2000, Toro et al. 2010, 
Hall and Sobel 2013) simulate synthetic storms based on the statistics of the historical storm 
records. We apply the statistical-deterministic model developed by Emanuel et al. (2006 and 
2008), which simulates storm environments statistically but generates synthetic storms in the 
simulated environments deterministically (with physical models). This model does not rely 
on the historical storm data but generates large samples of synthetic storms that are in 
statistical agreement with the (albeit limited) observations. Moreover, as the synthetic 
hurricane environments can be generated for any given climate state, this model can simulate 
synthetic storms not only in the current and past climates but also in projected future 
climates. This model has been used to simulate storms in various ocean basins under 
projected climates over the 21st century to investigate how the storm intensity and frequency 
may change with the changing climate (Emanuel 2013). It has also been used to simulate 
storms at city scales for, e.g., New York City (NYC; Lin et al. 2010a and 2012), Miami 
(Klima et al. 2011), Apalachee Bay (Lin et al. 2014), and Tampa (Lin et al. 2015) in Florida, 
Galveston in TX (Lickley et al. 2014), Cairns in Australia (Lin et al. 2015), and Dubai in the 



Persian Gulf (Lin et al. 2015). These city-scale simulations can be used to analyze local 
hazards and risk. Fig. 1 shows an example of 5000 storms we simulated for NYC (under the 
observed climate of 1981-2000 and with an estimated annual frequency of 0.34).  

                 

 
 
Hurricane hazards 
Given the storm characteristics, hazard models can be applied to estimate the wind, surge, 
and rainfall flooding induced by the storm during its landfall. As large numbers of 
simulations are required for the MC-based risk analysis, the hazard models should be 
(computationally) “simple”: often there is a balance between accuracy and efficiency. 

Various simple parametric methods have been developed to model the wind fields. 
Specially, one can estimate the storm wind field using a parametric wind profile (e.g., 
Holland 1980; Jelesnianski et al., 1992) and add an estimated background wind (Lin and 
Chavas 2012) to obtain the total wind field. We have recently developed a new complete 
wind profile (Chavas et al. 2015), motivated by the fact that although the canonical wind 
fields of mature hurricanes are approximately circularly symmetric, a single mechanism 
cannot describe a hurricane’s entire structure. Emanuel (2004) developed a physical model of 
the outer non-convecting region of the storm. Emanuel and Rotunno (2011) established an 
analytical profile that is physically valid only for the inner convecting region. The complete 
wind profile is constructed by mathematically merging these two theoretical solutions to 
cover the entire domain of the storm. This new physical model, evaluated and calibrated with 
various observational datasets, will have broad applications in hurricane hazard analyses. 

The storm surge is driven mainly by the storm surface wind and pressure, and it is 
particularly sensitive to the wind as well as coastal bathymetry and topography. Various 
hydrodynamic surge models, basically solving coastal shallow water equations, have been 
developed, including the Sea, Lake, and Overland Surges from Hurricanes (SLOSH; 
Jelesnianski et al., 1992) model used by the National Hurricane Center for real time 
forecasting and the Advanced Circulation (ADCIRC) model (Westerink et al. 2008). While 
the SLOSH model is computationally more efficient, the ADCIRC model can better resolve 
the physical processes and produce results with much higher resolutions. Fig. 2 shows that, as 
an example, the ADCIRC-model simulated storm surges from Hurricanes Irene (2011) and 
Sandy for the NYC area compare very well with the tidal gauge data. In these stimulations, 
we applied high-resolution bathymetry and topography data, observed storm characteristics, 

Fig. 1. 5000 synthetic storms simulated, using 
the Emanuel et al. (2006) model, that pass 
within 200 km of Battery, NYC with a 
maximum wind speed greater than 21 m/s. The 
green circle shows the 200-km-radiu area 
around the Battery. The red potion of each 
track shows the 100-hour period before and 
during landfall (the main time period 
considered for hazard modeling).  
 



as well as the parametric wind model and a similarly simple parametric pressure model 
(Holland 1980).  

 

 
Hurricane rainfall is relatively difficult to model due to its large spatial and temporal 

variation, compared to the wind and surge. Thus, most hurricane rainfall modeling applies 
full numerical weather prediction models (e.g., Tuleya et al. 2007, Lin et al. 2010b). 
However, this approach is not directly applicable to risk analysis, due to the required large 
input data and high computational cost. Recently, simpler parametric models have been 
developed based on historical rainfall statistics (e.g., Tuleya et al. 2007; Lonfat et al. 2007) 
and physical principles (e.g., Langousis et al. 2009). The basic physics of hurricane rainfall is 
that it is determined mainly by the environmental moisture and the speed of the storm 
updraft, which depends on low-level convergence due to surface friction, interaction with 
topography, and interaction with the background baroclinic state. A model that describes 
these processes has been shown to generate rainfall statistics comparable to the observations 
(Zhu et al. 2013). Research is ongoing to evaluate and further develop this physical rainfall 
model, which can then be coupled with a hydrologic model (e.g., Cunha et al. 2012) to 
simulate inland flooding.  
 
Hurricane risk 
The hazard models can be applied to the simulated synthetic storms to generate large samples 
of hazards, based on which the probabilities of the hazards can be estimated. For example, 
ASCE building code has applied such an approach to establish the design wind map (showing 
wind speeds for various return periods) for the entire U.S. coast. The FEMA flood map, 
depicting the 100- and 500-year floodplains to provide a basis for the federal flood insurance 
policy, is also developed with such an approach, although different storm and hazard models 
have been used in these different applications. If the hurricane model used to generate the 
synthetic storms can be driven by climate-model projected climate environments (Emanuel et 
al. 2008), the probabilistic hazards under future climate can be estimated. Fig. 3 shows, as an 
illustration of such an analysis we performed, the estimated storm surge level as a function of 

Fig. 2 Storm surge estimation for NYC for Irene (left; time 
series of water level at the Battery) and Sandy (right; spatial 
distribution of the simulated peak surge; the estimated peak 
surge at the Battery, about 2.9 m, is close to the observed 
value of about 2.8 m above high tide; black curve shows the 
observed track).  



return period for NYC, under the observed and climate-model-estimated current climates as 
well as the climate-model-projected future climates.  
 

 
Fig. 3. Estimated storm surge return level curves for NYC, under (left) observed climate of 1980-
2000 and (four panels on the right) four climate-model-projected climates of 1980-2000 (black) 
and of 2080-2100 (blue and, when accounting also for potential changes in storm size, red; with 
projected 1-m SLR accounted for). Each curve is based on 5000 syntethic storms; e.g., the curves 
on the left panel is based on the 5000 storms shown in Fig. 1. (from Lin et al. 2012) 
 

The hazard probabilities can also be combined with the estimated consequences of the 
hazards to quantify the risk. (The damage/losses can be estimated with vulnerability models 
such as the HAZUS model developed by FEMA.) The risk is often expressed by the 
expectation (mean) of the damage/loss in a year (annual expected damage, e.g., Aerts et al. 
2013). However, the full probabilistic distribution of the loss, if available, is more 
informative. In the context of climate change and coastal development, this risk is non-
stationary and likely increasing. To obtain a temporally integrated measure, the losses are 
also typically quantified by their present value (PV), the sum of all discounted losses 
occurring over a given time horizon (e.g., next 100 years). Then the risk can be considered as 
the mean or, better, the probability distribution of the PV of the potential losses. 

Moreover, the PV provides a convenient metric for comparing the benefit and cost of risk 
mitigation strategies. Specifically, the benefit can be considered as the PV of the avoided 
losses due to the mitigation, and the cost is the PV of the total cost of the mitigation 
(including construction and maintenance). While the cost is largely deterministic, the benefit 
is random. Most previous studies have focused on comparing the cost and the mean of the 
benefit (e.g., Aerts et al. 2014). Here we show a more informative way of comparing the cost 
and the probability distribution of the benefit, for three coastal flood mitigation strategies 
proposed for NYC. As shown in Fig. 4., for each strategy, we estimate the full distribution of 
the PV of the benefit and plot its exceedence probability to compare with the cost. The 
crossing of the probability curve of the benefit and the line of the cost gives the probability 
that the benefit is greater than the cost. The probabilities of getting any higher or lower 
benefits can also be easily read from the curve. Thus, the full probabilistic benefit-cost 
analysis provides the full information for making decisions for any specific risk tolerance 
(decisions made based on the mean assumes “risk neutral”). Moreover, these analyses have 
accounted for the projected coastal development and changes in the storm activity and the sea 



level over the 21st century. Such probabilistic risk management analyses rely on the 
physically-based risk assessment discussed above.     
 

 
Fig. 4. Estimated exceedance probability of PV of the benefit (curve) compared to the cost 
(vertical line), for strategies S2a and S2b (left), strategy S2c (middle), and strategy of elevating 
new houses on the floodplain by 6 feet (right), for NYC. S2a consists of three barriers to close off 
parts of NYC and NJ that preserve wetland dynamics of Jamaica Bay. S2b expands on S2a by 
adding a fourth barrier that closes off Jamaica Bay. S2c replaces three barriers from S2b with one 
large barrier in the outer harbor to protect a larger area. The details of these mitigation stratigies 
are discussed in Aerts. et al. (2014). The analyses acount for the projected coastal development 
and changes in storm activity and the sea level over the 21st century. Current and future building 
stock data is obtained from the New York City Office of Emergency Management. The sythetic 
storm surge events were generated by Lin et al. (2012) for the four climate models, as shown by 
the return level curves in Fig. 3. The probabilistic SLR projection is obtained from Kopp et al. 
(2014); the three curves of the same color shows results with SLR projected for the three 
representative concentration pathways (RCPs): RCP 2.6, RCP 4.5, and RCP 8.5, respectively.  

 
Future research 
It is still quite uncertain how hurricanes, especially their frequency and size, will vary with 
the climate. As scientific investigation continues, more physically-based methods for 
simulating synthetic storms should be developed for risk analysis. Hurricane rainfall models, 
especially those based on physics, are needed to estimate inland flooding risk. Hurricane 
hazards are correlated (e.g., hurricane wind affects both storm surge and rainfall; coastal and 
inland flooding may interact); multi-hazards approaches may be applied to estimate how the 
hazards will jointly evolve in the future and how the joint risk should be dealt with. In 
addition to engineering measures, urban planning and federal and private insurance play 
important roles in coastal risk mitigation; the physically-based probabilistic risk assessment 
should be applied to inform broader and more integrated risk management strategies.  
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