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Of the nearly two thousand planets confirmed to exist outside of the solar system, only a 

small handful were detected directly rather than inferred from their interaction with their host 

stars. The vast majority of known exoplanets were discovered by sifting years of observations of 

thousands of stars for periodic changes in the stars’ colors or fluxes, which indicate an orbiting 

planet. Imaging, on the other hand, allows for detection with just one observation, and 

confirmation with a few observations taken only months apart. More importantly, imaging 

exoplanets allows us to spectroscopically characterize them, often at spectral resolutions 

significantly exceeding what is possible with any other detection method. Spectroscopy allows us 

to probe the atmospheric, and potentially surface, composition of exoplanets and validate models 

of planet formation and evolution. 

Imaging is therefore a crucial component of our exoplanet detection and characterization 

toolbox. Exoplanet imagers on ground observatories are already producing exciting discoveries 

and the next generation of space instrumentation has the potential to detect Earth-like planets, 

and find indications of the presence of life. This short paper reviews the fundamental challenges 

in imaging exoplanets, along with the techniques used to overcome them and the status of current 

technology development for exoplanet imagers in space. 
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1  Imaging of Exoplanets 

A telescope operates by collecting light from an astronomical source using a finite-sized 

aperture—either the entrance pupil of a refractive system or the primary mirror of a reflective 

one—and bringing the light to a focus on an imaging detector, such as a charge-coupled device 

(CCD). Diffraction effects limit the spatial resolving capabilities of telescopes, with angular 

resolution inversely proportional to the size of the aperture. For a circular pupil the minimum 

angular resolution (αr) of the system will be greater than approximately 1.22λ/D where λ is the 

wavelength of light and D the diameter of the aperture. This is most easily understood by 

considering the point spread function (PSF) of the telescope—the impulse response generated by 

imaging a point source. For a circular aperture, the PSF is an Airy disk, shown in Figure 1—a 

bright central spot of radius αr surrounded by a series of annuli that decrease exponentially in 

brightness with angular separation. Between these annuli are small, dark regions called nulls. 

  

   



3 

Figure 1: Numerical simulation of an Airy disk—the impulse response of a circular 
aperture. Left: Image of a point source, with color indicating intensity in log scale. Right: 
The (radially symmetric) contrast profile of the image.  

Planets are significantly fainter than their host stars, with contrasts of 106 for the very 

brightest, self-luminous, young, Jovian planets, and 1010 for Earth-sized planets in reflected, 

visible light. Assuming that we happened to catch a planet when it was precisely located on one 

of the deeper nulls of a perfect, diffraction-limited telescope, we still would not be able to image 

it, as no detector has the dynamic range required to capture both signals from the planet as well 

as the PSF of the star in the same image. 

2  Coronography 

Fortunately, this problem was partially solved in the early 20th century by solar astronomers 

studying the sun’s corona, which is one million times fainter than the sun itself. Previously, the 

corona could only be studied during full solar eclipses. In the 1930s, however, Bernard Lyot 

demonstrated the first solar coronagraph—a system design specifically to block bright, on-axis 

sources, to allow for the study of faint, off-axis ones (Lyot, 1939). 
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Figure 2: Top: Schematic of a Lyot coronagraph. Based on Sivaramakrishnan et al. 
(2001). Bottom: Images taken at the pupil plane of the Lyot stop showing (left) the 
unobscured entrance pupil, (middle) only the focal plane mask, and (right) both the focal 
plane mask and Lyot stop. Each image is individually stretched and the final image has 
less than 1% of the light in the first image.  

Figure 2 shows a schematic view of a Lyot coronagraph, along with images taken at a pupil 

of a coronagraphic system. This pupil is conjugate with the entrance pupil of the whole system, 

so that the first image, where no coronagraph elements are in place, is equivalent to the intensity 

distribution seen by the entrance aperture of the whole system. The central dark spot in the first 

image is due to the secondary mirror that partially obscures the primary aperture in this system. 

On-axis starlight, along with off-axis planet light enters the telescope and is brought to a focus, 

where the on-axis source is blocked by a small, hard-edged focal plane mask (FPM). The 

remaining light is propagated to the next pupil plane, as in the second image. While most of the 

starlight is blocked by the FPM, some will diffract around the mask’s edges, creating a pattern of 

rings along with a bright central spot. These are blocked by introducing another hard edged 

mask, called a Lyot stop, into the pupil leaving very little residual light, as in the third image. 

The Lyot stop can also include additional features to handle diffraction about other mechanical 

elements, such as struts that hold up the secondary mirror. 
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To deal with residual diffracted light in the classical Lyot coronagraph, an additional pupil 

plane can be introduced before the FPM with a partially transmissive mask to apdodize the beam 

so that diffraction effects downstream are minimized (Soummer, 2005). An alternate approach is 

to introduce a specially shaped hard-edged pupil ahead of the FPM to change the PSF so it is no 

longer radially symmetric, leaving high contrast regions in the downstream focal plane (Kasdin 

et al., 2005). Other strategies involve replacing the hard-edged FPM of the original Lyot 

coronagraph with a phase-shift mask in order to produce destructive interference of the on-axis 

light (Roddier and Roddier, 1997). One can also achieve the beam apodization by using pupil-

mapping mirrors to change the geometrical redistribution of the light (Guyon et al., 2005).  

All of these approaches have various pros and cons, but all share the same basic limitations. 

Coronagraphs are still limited by the diffraction limit of the telescope, and most designs remove 

part of the planet light as well as the starlight. A particular coronagraph’s design is highly 

specific to a particular telescope design. Finally, many coronagraph designs are highly sensitive 

to misalignment, vibration, and optical surface errors. Coronagraphs being evaluated for use in 

space all rely on introducing active wavefront control via deformable mirrors, which have only 

recently begun to be demonstrated for use in space (Cahoy et al., 2014). 

3  Starshades 

An alternate approach, first suggested by Spitzer (1962), involves blocking the starlight before it 

ever enters the telescope. This method requires a space telescope to fly in formation, over a 

baseline of tens of thousands of kilometers, with an occulting spacecraft, or starshade. The 

starshade must be tens of meters in diameter and specifically shaped, as diffraction effects would 
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cause light to be scattered back into the shadow cast by a simple flat plate. Fortunately, by 

Babinet’s principle, the occulter becomes complementary to a pinhole camera, allowing 

starshades to be designed in much the same way as shaped pupil masks for internal 

coronagraphs, via numerical optimization (Vanderbei et al., 2007). This allows for constraints to 

be placed on minimum feature sizes to ensure that the produced designs are manufacturable. The 

resulting optimized shapes are radially symmetric, with a circular central core surrounded by 

petal-like extensions, as in Figure 3.  

  

  

Figure 3: Schematic view of a starshade as seen by an occulted telescope. The starshade 
creates a shadow region of high contrast at the telescope aperture, allowing for 
exoplanets to be detected. Based on Vanderbei et al. (2007).  

The main advantage of starshades is that they can achieve high contrasts with any 

conventional telescope design and without any active wavefront control. Furthermore, the 

minimum angular separation of a detectable planet for a starshade is determined solely by 

geometry—the size of the starshade and its distance from the telescope—and is the same at at all 
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wavelengths. On the other hand, while a telescope with an internal coronagraph merely needs to 

pivot in order to observe a new target, a starshade must be repositioned over large distances, with 

weeks of slew time in between observations, leading to fewer stars observed and making 

scheduling optimization more difficult (Savransky et al., 2010). Starshade contrasts are also 

highly sensitive to shape, positioning and alignment errors, leading to μm order manufacturing 

tolerances, mm deployment tolerances, and meter-scale alignment tolerances held throughout the 

course of an observation (Shaklan et al., 2010). The requirement for precise alignment for 

extended periods also makes the formation flying problem more difficult in geocentric orbits, so 

that most starshade mission concepts assume operations about the second Earth-Sun Lagrange 

point (Kolemen et al., 2012). Finally, unlike coronagraphs, it is impossible to fully test starshades 

on the ground, so that proxy experiments must be constructed to build confidence in this 

technique (Sirbu et al., 2014). 

4  Current and Future Exoplanet Imagers 

Multiple exoplanet imagers, including the Gemini Planet Imager (Macintosh et al., 2014) and 

SPHERE (Sauvage et al., 2013) are currently operating at some of the largest ground-based 

observatories. These instruments couple advanced coronagraphs with extreme adaptive optics 

systems (Tyson, 2010), which correct for the effects of the turbulent atmosphere, to produce the 

highest levels of contrast ever demonstrated from the ground. Still, these systems will only be 

able to detect the very youngest, self-luminous giant planets on relatively large orbits—akin to 

Jupiter in the first 100 million years of its existence. Advances in adaptive optics and 

coronography, and the construction of the next generation of extremely large telescopes will 
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allow for the detection of smaller, older planets, but our best chance of directly imaging and 

getting spectra of an Earth-like planet lies in space. 

 

  

Figure 4: Colored points represent a simulated population of exoplanets based on prior 
surveys, star markers represent contrast estimates for known, indirectly detected 
exoplanets at their most favorable viewing geometries, and the black curves are the 
predicted contrasts for one design of the WFIRST coronagraph at various levels of 
telescope stability. Based on Savransky (2013).  

Currently, NASA is developing a coronagraphic instrument for the Wide Field Infrared 

Space Telescope (WFIRST; Spergel et al., 2015), the next major astrophysics mission to be 

launched after the James Webb Space Telescope. The WFIRST coronagraph will be capable of 

detecting a wide variety of exoplanets, including planets like Neptune, as well super-Earths—a 

class of potentially rocky planets up to twice the radius of the Earth, which do not exist in our 
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own solar system. Figure 4 shows a simulation of the population of planets around nearby stars, 

based on statistics from indirect surveys (Fressin et al., 2013; Howard et al., 2010), along with 

the expected contrast of one design for the WFIRST coronagraph with varying assumptions of 

telescope stability (Krist, 2014). The NASA Astrophysics Division has also sponsored two 

Science and Technology Definition Teams to study $1B class mission concepts based on a 

starshade (Exo-S) and coronagraph (Exo-C). These and other concept studies are helping identify 

the remaining engineering challenges in direct imaging, and guiding technology development 

programs. Thanks to these efforts, we may have a space-based direct imaging instrument 

operating within the next decade, producing exciting new science and helping validate the 

technologies needed to discover Earth-like planets and potentially find alien life. 

For more information on WFIRST, see http://wfirst.gsfc.nasa.gov/ and for 

more information on Exo-S and Exo-C, see https://exep.jpl.nasa.gov/stdt/. 
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