reshaping electronics

Soft Stretchable Biointegrated Electronics

Frontiers of Engineering

Roozbeh Ghaffari, PhD MC10 Inc Co-founder, Vice President of Technology MIT Research Laboratory of Electronics June 3, 2015

Biointegrated Devices and the Human Body

Fundamental Mismatch

Rigid high performance electronics

ŀS

▽ 前 6248 1C2608DMb

8

CT

mc1

•R3(

MC10 CONFIDENTIAL

Ct3

C16

15

Reshape them into human-compatible form factors that

stretch, bend and twist

MC10 CONFIDENTIAL

Core Technology: Embedded Unpackaged Die Amc10

Dalal & Ghaffari, In prep

Core Technology: Spring-like Interconnects

High Performance Stretchable Electronics

Ultrathin Stretchable Electronics

Applications of Stretchable Bioelectronics

Smart Catheters and Prosthetics

Cardiac Sensor Sheets

Epidermal Electronics

Paper-based Sensors/Electronics

Applications of Stretchable Bioelectronics

Smart Catheters and Prosthetics Cardiac Sensor Sheets

Epidermal Electronics

Paper-based Sensors/Electronics

Wearables Today...

Stretchable Bioelectronics on the Body

MC10 CONFIDENTIAL

Strain Gauge Sensor Arrays

Prosthetic Skin Instrumented with Sensors

Kim et al, Nature Communications 2015

Skin Instrumented with Sensors

Drug Delivery Through Epidermal Bioelectronics Amc10

Son et al, Nature Nanotechnology 2014

Fundamental Mismatch

Bridging Gap Between <u>Electronics</u> and <u>Medicine</u>

The Future of Bio-Electronics...

"Hacking the Human OS"

Hacking the Human OS > Reading the Code > Sensors

A Temporary Tattoo That Senses Through Your Skin

The Biostamp can replace today's clunky biomedical sensors By Tekla S. Perry Posted 29 May 2015 | 18:08 GMT

MC10 Team

Amc10

reshaping electronics

Soft Stretchable Biointegrated Electronics

Frontiers of Engineering

Roozbeh Ghaffari, PhD MC10 Inc Co-founder, Vice President of Technology MIT Research Laboratory of Electronics June 3, 2015

Future of Wearable Technology

nature nanotechnology

ARTICLES

PUBLISHED ONLINE: XX XX 2014 | DOI: 10.1038/NNANO.2014.38

Multifunctional wearable devices for diagnosis and therapy of movement disorders

Donghee Son^{1,2†}, Jongha Lee^{1,2†}, Shutao Qiao³, Roozbeh Ghaffari⁴, Jaemin Kim^{1,2}, Ji Eun Lee^{1,2}, Changyeong Song^{1,2}, Seok Joo Kim^{1,2}, Dong Jun Lee^{1,2}, Samuel Woojoo Jun^{1,2}, Shixuan Yang³, Minjoon Park^{1,2}, Jiho Shin^{1,2}, Kyungsik Do^{1,2}, Mincheol Lee^{1,2}, Kwanghun Kang^{1,2}, Cheol Seong Hwang⁵, Nanshu Lu³, Taeghwan Hyeon^{1,2} and Dae-Hyeong Kim^{1,2}*

Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energyefficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.

MC10 CONFIDENTIAL

MC10

