Watershed Monitoring to Prevent Transmission of Waterborne Disease

Kristen Jellison, Ph.D.

Department of Civil and Environmental Engineering Lehigh University, Bethlehem, PA USA

National Primary Drinking Water Regulations

For More Information

PublioH eath

Goal (mgL)

10.1

EPA's Safe Dinking Water Web site: http://www.epa.gov/safewater/

EPA's Safe Drinking Water Holline : (800) 425-4791

To order additional posters or other ground water and drinking water publication s.please contact the National Service Center for Environmental Rublications at : (800) 490-9196, or email:nscep@bps-Imitcom.

Cryptosporidium spp.

Image Credits: http://www.hominis.mic.vcu.edu/Cparvum_sporozoites.html; http://www.esemag.com/archive/0199/crypto.htm; Current & Blagburn, 1990

National Notifiable Diseases Surveillance System, United States

Incidence (per 100,000 population) of cryptosporidiosis,

Number and average annual rate of cryptosporidiosis case reports, 2009-2010

Source: http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6105a1.htm

U.S. Environmental Protection Agency LT2ESWTR

Source: http://www.eetinc.com/awwarf/

U.S. EPA Method 1623.1

Limitations

- 10 L sample
- "Snapshot" in time
- Variable recoveries
 - Seeded tap water: 23.5-71.2%
 - Raw source water: 9.5-54.5%
 (McCuip & Clancy 2005)

(McCuin & Clancy 2003)

• Expensive

1. Filtration

2. Elution

- 3. Immunomagnetic Separation (IMS)
- 4. Immunofluorescent Assay

(IFA)

Biofilms

- *C. parvum* attaches to (and persists in) biofilms (Helmi et al. 2008; Howe et al. 2002; Rogers & Keevil 1995; Searcy et al. 2006; Wolyniak-DiCesare et al. 2012; Wolyniak et al. 2009; Wolyniak et al. 2010)
- Some fraction of oocysts remain attached even after oocysts are removed from feed (Wolyniak et al. 2009; Wolyniak et al. 2010)
- Retention of attached oocysts correlates strongly with biofilm roughness (Wolyniak-DiCesare et al. 2012)

Biofilms

 Biofilms sampled from benthic rocks collected upstream and downstream of a WWTP

<u>Viable</u> = viable *C. parvum* or *C. hominis*

<u>**Other</u>** = nonviable *C. parvum* or *C. hominis* OR viable/nonviable other *Cryptosporidium* species</u>

Biofilm Sampler

- Monitor stream quality over time
- Inexpensive
- Quantitative data is attainable given stream velocity (and attachment efficiency, K_A)

t = duration of time deployed

n = number of slide surfaces

Oocyst concentration = $\sum_{i=1}^{n} \frac{\# oocysts \ counted \cdot K_A}{v \cdot h \cdot w \cdot t}$

Sampling Results 2013-2014

Benthic Rock Biofilms

• Biofilms sampled from benthic rocks collected upstream and downstream of a defective sewer lateral (October 2014-March 2015)

Conclusions

- Benthic rock biofilm sampling may identify point sources of oocysts along the length of a waterway
 - May provide historic look at water quality conditions
- Oocyst detection in slide biofilms is comparable to oocyst detection in filtered water samples
 - Frequency, oocyst numbers

Long-term Significance

- Biofilm monitoring is much less expensive than filtration
 - Filters \$120 each; Slides \$3 per set; Rocks \$0 For a utility monitoring 3 WTP intakes, 2x/month:

 $filters: \frac{2 \text{ sample dates}}{\text{month}} \cdot \frac{3 \text{ locations}}{\text{sample date}} \cdot \frac{filter}{\text{location}} \cdot \frac{\$120}{filter} \cdot \frac{12 \text{ months}}{\text{year}} = \$8,640 \text{ per year}$ $slides: \frac{2 \text{ sample dates}}{\text{month}} \cdot \frac{3 \text{ locations}}{\text{sample date}} \cdot \frac{\$lide \text{ set}}{\text{location}} \cdot \frac{\$3}{\text{slide set}} \cdot \frac{\$3}{\text{slide set}} \cdot \frac{\$210}{\text{year}} = \$216 \text{ per year}$

rocks: \$0 per year

• Biofilm monitoring could permit more frequent monitoring at more locations in a watershed; may be used to identify oocyst point sources

Limitations

- Determination of oocyst concentration depends on stream velocity at biofilm surface, time of slide deployment, and oocyst attachment efficiency
- Oocyst attachment efficiency may not be constant
 - Variability in biofilm composition and architecture in different streams and at different times of year

Ongoing Interdisciplinary Work

- Characterization of biofilm surfaces at sites of oocyst attachment
 - Scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy
 - Modeling oocyst attachment/detachment kinetics

http://www.marvistavet.com/assets/image s/single_cryptosporidium_oocyst.gif

Ongoing Interdisciplinary Work

- Development of a biomimetic surface for standardized oocyst detection
 - Antimicrobial (prevent biofilm formation)
 - Inexpensive (sell for <\$5)
 - Constant oocyst attachment efficiency over 3-day deployment
- Similar approach could be taken for monitoring other waterborne pathogens

Acknowledgements

The Philadelphia Water Department has generously provided funding and staff support for this work.

Graduate Students: Elizabeth DiCesare, Dan Cannistraci, Jenelle Fortunato

Undergraduate Research Assistants: Annie Cornell, Kimberly Hetrick, Tom Jawin, Jennifer Markham, Natalie Tacka

Contact Information

Kristen Jellison, kjellison@lehigh.edu, 610-758-3555