

Electrochemical Prozac: Relieving Battery Anxiety through Life and Safety Research

Alvaro Masias Irvine, CA – September 11-13, 2014

Transportation Battery Needs

- Life Prediction
 - Low Current
 - High Current
- Safety Prediction
 - Mechanical
 - Thermal
 - Electrical
- Future

Transportation Battery Needs

- Life Prediction
 - Low Current
 - High Current
- Safety Prediction
 - Mechanical
 - Thermal
 - Electrical
- Future

Electrified Vehicle Types

A. Masias and K. Tojima, "Advanced Automotive Battery Research," in *Plug-In 2009*, Long Beach, 2009.

Battery Technologies by Type

Vehicle	Past	Near Term	Future
Туре	(1990-2010)	(2010-2015)	(2015+)
Stop-Start	Lead Acid	Lead Acid	Lead Acid & Lithium Ion
HEV (Mild & Strong)	Nickel Metal Hydride	Lithium Ion & Nickel Metal Hydride	Lithium ion & Nickel Metal Hydride (Toyota)
PHEV	N/A	Lithi	um Ion
EV	Lead Acid & Nickel Metal Hydride	Lithi	um lon

Battery Requirements by Type

Vehicle Type	Power (kW)	Energy (kWH)	Cycles (1,000)
Stop-Start	< 10	< 0.4	75 – 450 (Charge Sustaining)
HEV (Mild & Strong)	Mild: 10-20 Strong: 20- 40	Mild: < 1 Strong: 1-2	300 (Charge Sustaining)
PHEV	> 40	5 – 16	300 (Charge Sustaining) 5 (Charge Depleting)
EV	> 80	> 12	5 (Charge Depleting)

State of Charge by Type

T. Duong, "Direction for Energy Storage R&D in the Vehicle Technologies Program," in Scalable Energy Storage Beyond Li-Ion, Oak Ridge, 2010.

EV Battery Performance

A. Masias and T. Miller, "Automaker Energy Storage Needs for High Energy Application," in *Advanced Automotive Batteries Conference*, Orlando, 2010.

Transportation Battery Needs

- Life Prediction
 - Low Current
 - High Current
- Safety Prediction
 - Mechanical
 - Thermal
 - Electrical
- Future

Capacity Fade Prediction

Low Current, High Precision

A. J. Smith, J. C. Burns, S. Trussler and J. R. Dahn, "Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries," *Journal of the Electrochemical Society*, vol. 157, no. 2, pp. A196-A202, 2010.

Automotive Currents

"United States Advanced Battery Consortium," http://www.uscar.org/guest/teams/12/U-S-Advanced-Battery-Consortium

Cell Thermals

Thermal Management Research

Transportation Battery Needs

- Life Prediction
 - Low Current
 - High Current
- Safety Prediction
 - Mechanical
 - Thermal
 - Electrical
- Future

FMVSS 305

Section		Requirement
S5.1	Electrolyte Spillage from Propulsion Batteries	<5L Spillage Total, 0 into Passenger Cabin 30 minutes after barrier test
S5.2	Electrical Energy Storage / Conversion Device Retention	Energy Device shall remain attached to vehicle and out of passenger cabin
S5.3	Electrical Safety	Maintain Isolation >100ohm/volt with monitoring or >500 ohm/volt without monitoring

EUCAR Rating System

Score	Title	Description				
0	No Effect	No Effect. No loss of functionality				
	Passive	No defect; no leakage; no venting, fire, or flame; no rupture; no				
1	Protection	explosion; no exothermic reaction or thermal runaway. Cell				
	Activated	reversibly damaged. Repair of protection device needed.				
	Defect /	No leakage: no venting, fire, or flame; no rupture; no explosion;				
2	Damage	no exothermic reaction or thermal runaway. Cell irreversibly				
	Damage	damaged. Repair needed.				
2	Leakage	No venting, fire or flame*; no rupture; no explosion. Weight loss				
5	(∆ mass < 50%)	<50% of electrolyte weight (electrolyte = solvent +salt).				
Λ	Venting	No fire or flame*; no rupture; no explosion. Weight loss of ≥50%				
4	(∆ mass > 50%)	of electrolyte weight (electrolyte= solvent + salt).				
5	Fire or Flame	or Flame No rupture; no explosion (i.e., no flying parts).				
6	Rupture	No explosion, but flying parts of the active mass.				
7	Explosion	Explosion (i.e., disintegration of the cell).				

UNECE, "Electric Vehicle Safety (EVS) - Transport - Vehicle Regulations - UNECE Wiki," https://www2.unece.org/wiki/pages/viewpage.action?pageld =3178628

Mechanical Safety Testing

Test Type		Industry Standard						Government Regulation			
		Freedom Car	SAE J2929	SAE J2464	ISO 12405-1	ISO 12405-3	UN 38.3	ECE R100	Q/C-T 743	KMVSS 1.48	
	Mechanical Integrity	•	•	•		•		•	•		
Mechanical	Penetration	•		•					•		
	Immersion	•	•	•		•				•	
	Roll-Over	•		•							
	Drop	•	•	•		•	٠		•	•	
	Mechanical Shock	•	•	•	•	•	٠	•			
	Vibration		•		•	•	٠	•	•		

Mechanical Response

Thermal Safety Testing

Test Type		Industry Standard						Government Regulation			
		Freedom Car	SAE J2929	SAE J2464	ISO 12405-1	ISO 12405-3	UN 38.3	ECE R100	Q/C-T 743	KMVSS 1.48	
	Thermal Stability	•									
	Fire Exposure	•	•	•		•		•		•	
Therm	High Temperature Storage	•							•	•	
	Cycle w/o Thermal Control	•	•	•		•		•			
a	Thermal Shock	•	•	•	•	•	•	•			
	Humidity Exposure		•		•	•					
	Passive Propagation			•							

Thermal Exposure Test

"Electric power trained vehicles. Regulation No. 100 – Rev.2," United Nations Economic Commission for Europe, 2013.

Electrical Safety Tests

Test Type		Industry Standard						Government Regulation			
		Freedom Car	SAE J2929	SAE J2464	ISO 12405-1	ISO 12405-3	UN 38.3	ECE R100	Q/C-T 743	KMVSS 1.48	
	Overcharge	•	•	•	•	•	•	•	•	•	
Electrical	Short Circuit	•	•	•	•	•	•	•	•	•	
	Over Discharge	•	•	•	•	•	•	•	•	•	
	High Voltage Exposure		•								
	Partial Short Circuit	•									
	Separator Shutdown			•							

Electrical Response

Transportation Battery Needs

- Life Prediction
 - Low Current
 - High Current
- Safety Prediction
 - Mechanical
 - Thermal
 - Electrical
- Future

	Current (A)	Precision (ppm)	Machine					
Academia	<10	10	Dalhousie University UHPC					
Industry	200	50	Arbin Instruments HP2					

E. Sahraei, J. Meier and T. Wierzbicki, "Characterizing and modeling mechanical properties and onset of short," *Journal of Power Sources*, vol. 247, pp. 503-516, 2014.

Acknowledgements

This Work is supported by:

- US Department of Transportation National High Traffic Safety Administration (NHTSA) [DTNH22-11-C-00214]
- US Department of Energy Advanced Projects Agency-Energy (ARPA-E) [DE-AR000267]