Photonics Meets Biophysics and Biology: From Nanoimaging to Winning the War on Cancer

Vadim Backman, Ph.D.

Biomedical Engineering Department McCormick School of Engineering Northwestern University

Backman Laboratory

Alterations in chromatin structure, microcirculation, and ECM in early carcinogenesis

Screening /diagnosis of lung, colon, ovarian, pancreatic, esophageal, thyroid, and prostate cancers

Cell Organization: From Microscale to Nanoscale

- Cells have a highly complex organization:
 - Cellular level: ~ 10 µm
 - Organellar level: ~ 1 μm
 - Macromolecular level: < 0.1 μm
- Light microscopy does not resolve cell structures below ~200-500 nm.

Cell Nanoarchitecture

- Fundamental building blocks of a cell
- Cytoplasm: ribosomes, cytoskeleton, membranes
- Nucleus: nucleosomes, 30 nm chromatin fibers, higher-order chromatin structure

 Understanding cellular processes at the nanoscale has been stymied by the lack of practical means of analysis of cellular nanoscale architecture

Histology Cannot Measure Cellular Nanoarchitecture

- Conventional microscopic histology images cell micro-architecture but does not resolve cell structure below ~200-500 nm
- How can we measure the statistical properties of spatial organization of macromolecular density with nanoscale sensitivity
 - Electron microscopy is too variable, cumbersome, and expensive
 - Optical techniques?

"Diefræctionsioniteen"

 $n^{1D}_{\Lambda}((xx,yy))$

The 'Universe' of Subdiffractional Microscopy

- STED stimulated emission depletion microscopy
- STORM stochastic optical reconstruction microscopy
- LSSIM laser scanning structured illumination microscopy
- PWS partial wave spectroscopic microscopy
- ISOCT inverse spectroscopic optical coherence tomography

Superresolution Microscopy: Stimulated Emission Depletion (STED) Microscopy

Superresolution Microscopy: Stochastic Optical Reconstruction Microscopy (STORM)

Sensing Subdiffractional Structure: What Is 'Structure'?

- Refractive index (n) ~ local concentration of macromolecules (ρ): n=n_w+αρ
- Refractive index correlation function, B_n(r), formulation
- Whittle-Mattern family

$$B_n(r_d) = A_n \cdot \left(\frac{r_d}{L_n}\right)^{\frac{D-3}{2}} \cdot K_{\frac{D-3}{2}}\left(\frac{r_d}{L_n}\right)$$

Shape factor *D*:

- Gaussian: D → ∞
- exponential: D = 4
- stretched exponential: 3 < D < 4
- Kolmogorov / von Karman: D = 11/3
- Henyey-Greenstein: D = 3
- power law: D < 3

Sensing Subdiffractional Structure: What Is 'Structure'?

- Refractive index (n) ~ local concentration of macromolecules (ρ): n=n_w+αρ
- Refractive index correlation function, $B_n(r)$, formulation

Partial Wave Spectroscopic (PWS) Microscopy: Spectroscopy + Microscopy for Nanoscale Sensing

- **Physics:** Novel theory of the statistical properties of light scattering by coherence volume-restricted complex structures with nanoscale details
- **Technology:** Interference between a reference wave and light scattered by refractive index variations within a coherence volume
 - Second order spectral statistics (Σ) of coherence volume-restricted interference signal is uniquely sensitive to subdiffractional length scales
- Application: Sensing intracellular nanoscale architecture

Partial Wave Spectroscopic (PWS) Microscopy: Spectroscopy + Microscopy

What is a (pre)-cancerous cell?

How to win the war on cancer?

How to win the War on Cancer: Risk Stratification and Two-tier Screening

- A solution is risk stratification a pre-screen to identify patients most likely to benefit from 2nd-tier diagnostic tests
 - Low-cost (cost effective)
 - Primary care setting
 - Non-invasive
 - No/minimal discomfort to patients
 - Sensitive not only to cancers but also to preventable lesions

Genetic / Environmental Field Carcinogenesis and Colorectal Tumorigenesis

Chromatin Alterations are One of the Best Markers of Carcinogenesis

histologically normal cells in field carcinogenesis precedes dysplasia

Backman et al., Journal of Cancer, 4(3), (2013)

'clumping' (rough/coarse chromatin) is

one of the best markers of neoplasia

across all solid cancers

CHROMATIN COMPACTION IN FIELD CARCINOGENESIS: TEM Evidence

- Histologically normal rectal cell nuclei from control patients and those harboring a pre-cancerous adenoma elsewhere in the colon, representing field CRC.
- Histologically normal colonic cell nuclei from control rats and those treated with azoxymethane (10 weeks, premalignant time point), representing early CRC.

Nano-architectural Alterations in Histologically-Normal Cells in Field Carcinogenesis

Cells from buccal epithelium (cheek cells)

Lung Cancer - Non small cell

Cancer Research, **70**, 7748 (2010)

Disorder Strength of Histologically-Normal Buccal Cells Is Increased in Patients With Lung Cancer

STUDY DETAILS

- Blinded study design
- Cells Brushed from Buccal Mucosa
- Tumor Location: Lung
- 283 subjects
- 30 cells per patient

STUDY RESULTS

Sensitive to lung cancer irrespective of

- Stage
- Type and sub-type
- Risk and demographic factors

Nanocytology Smokers vs.	Performance: lung cancer
Sensitivity	89%
Specificity	95%

Disorder Strength of Histologically-Normal Rectal Cells Is Increased in Patients With Adenomas Elsewhere in the Colon

STUDY DETAILS

- Blinded study design
- Cells Brushed from Rectum
- Adenoma Location: Colon
- 306 subjects
- 30 cells per patient

STUDY RESULTS

Sensitive to adenomas irrespective of

- Adenoma location
- Risk and demographic factors
- Colitis & other non-neoplastic lesions

Nanocytology for patients with advanced adenomas

Sensitivity	85%
Specificity	85%

Sensitivity 11% 34% 17%	State-of-the-art	FOBT	FIT	Fecal DNA
	Sensitivity	11%	34%	17%

Cancer Research, 72 (2012)

Disorder Strength of Prostate Cells Is Increased in Patients With Aggressive Versus Indolent Cancers

STUDY DETAILS

- Blinded study design
- Nanocytology on prostate biopsy sections
- Prostate biopsy → patients are followed to identify aggressive vs. indolent cancers
- 38 subjects

STUDY RESULTS

Distinguishes aggressive versus indolent prostate cancers

Nanocytology predicts aggressive versus indolent prostate cancers

Sensitivity	80%
Specificity	88%

Nanoscale Alterations: A Universal Event in Carcinogenesis (7 Organ sites, 816 Subjects)

- Lung cancer: buccal cells
- Colon adenomas: rectal cells
- Prostate cancer: aggressive versus indolent cancers
- Ovarian cancer: endocervical cells
- Esophageal dysplasia: upper esophageal cells
- Pancreatic cancer: duodenal cells
- Thyroid cancer

CAUSES: Nanoarchitectural Chromatin Alterations Are a Common Outcome of Multiple Molecular Pathways

CONSEQUENCES: Nanoenvironment Affects Gene Expression Simplified 1D gene expression process:

- Transcription
 - DNA-histone interaction
 - Accessibility to transcription factors
 - DNA dehybridization (DNA-helicase activity)
- Post-transcriptional modifications
 - mRNA diffusion from nucleus to RER
 - mRNA degradation by miRNA, etc.
- Translation
 - Protein synthesis
- Post-translational modifications
 - Protein folding
 - Accessibility of chaperons

3D gene expression process:

- 3D chromatin packing
- Gene co-localization and co-expression

Nanoenvironment Affects Transcription Non-linearly: Systems Molecular Biophysics

- How does chromatin nanoenvironment regulate gene expression? What are the physical mechanisms?
- Molecular dynamics modeling of gene transcription in a complex nanoenvironment
- Nanoenvironment has a non-monotonic effect on gene transcription
- Other non-monotonic effects: surface area of chromatin accessible to transcription factors, work required for DNA double-helix de-hybridization

Chromatin Compaction in Early Carcinogenesis: Implications on Transcription

FIELD CARCINOGENESIS: Multiple Alterations Precede Tumors

Detecting ECM and Microvascular Alterations Using ISOCT

SOCIETAL IMPLICATIONS: Population Screening

Approach to Population Screening

Estima	ted New Cases*	Can	cer In	ciden	ce and	d Mortality: 2010		
				Males	Female	s		
	Prostate	217,730	28%			Breast	207,090	28%
	Lung & bronchus	116,750	15%			Lung & bronchus	105,770	14%
	Colon & rectum	72,090	9%			Colon & rectum	70,480	10%
	Urinary bladder	52,760	7%			Uterine corpus	43,470	6%
	Melanoma of the skin	38,870	5%			Thyroid	33,930	5%
	Non-Hodgkin lymphoma	35,380	4%			Non-Hodgkin lymphoma	30,160	4%
	Kidney & renal pelvis	35,370	4%			Melanoma of the skin	29,260	4%
	Oral cavity & pharynx	25,420	3%			Kidney & renal pelvis	22,870	3%
	Leukemia	24,690	3%			Ovary	21,880	3%
	Pancreas	21,370	3%			Pancreas	21,770	3%
	All Sites	789,620	100%			All Sites	739,940	100%

Estimated Deaths

Clinical data

Potential/planned

			Males	Ferr
Lung & bronchus	86,220	29%		
Prostate	32,050	11%		
Colon & rectum	26,580	9%		- 7
Pancreas	18,770	6%		
Liver & intrahepatic bile duct	12,720	4%		
Leukemia	12,660	4%		
Esophagus	11,650	4%		
Non-Hodgkin lymphoma	10,710	4%		
Urinary bladder	10,410	3%		
Kidney & renal pelvis	8,210	3%		
All Sites	299,200	100%		

nales	S		
	Lung & bronchus	71,080	26%
	Breast	39,840	15%
	Colon & rectum	24,790	9%
	Pancreas	18,030	7%
	Ovary	13,850	5%
	Non-Hodgkin lymphoma	9,500	4%
	Leukemia	9,180	3%
7	Uterine Corpus	7,950	3%
	Liver & intrahepatic bile duct	6,190	2%
	Brain & other nervous system	5,720	2%
	All Sites	270,290	100%

Jemal, A. et al. CA Cancer J Clin 2010

Acknowledgements

Northwestern University Hariharan Subramanian, Ph.D. Dhwanil Damania Lusik Cherkezyan Yolanda Stypula Ilker Capoglu, Ph.D. Jeremy Rogers, Ph.D. Prabhakar Pradhan, Ph.D. Justin Derbas John Chandler Charles Mandeval NorthShore University

HealthSystems Hemant Roy, M.D. Michael Goldberg, M.D. Laura Bianchi, M.D. Eugene Yen, M.D. Dan Ray, M.D. Tat Tsang, M.D. Shailesh Bajaj, M.D. Joseph Muldoon, M.D. <u>NYU</u>

William N. Rom, M.D. Harvey I. Pass, M.D.

<u>U of Pittsburgh</u> Randall Brand, M.D.

Indiana University Doug Rex, M.D.

University of Chicago Vani Konda, M.D. David Rubin, M.D.

Prof. Allen Taflove (NU) Prof. Igal Szleifer (NU) Prof. Hao Zhang (NU) Prof. Lonnie Shea (NU) Prof. Vinayak Dravid (NU)

<u>Funding</u> NIH, NSF