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Cell Organization: From Microscale to Nanoscale

» Cells have a highly complex organization:
o Cellular level: ~10 um
* Organellar level: ~1 um
* Macromolecular level: < 0.1 ym

* Light microscopy does not resolve cell structures
below ~200-500 nm.

Cell Nanoarchitecture
* Fundamental building blocks of a cell
» Cytoplasm: ribosomes, cytoskeleton, membranes

.

* Nucleus: nucleosomes, 30 nm chromatin fibers, ONE 3 TRl M g W ] —

higher-order chromatin structure
Membranes | Actin filaments
Ribosomes
3D Reconstruction of cytoplasm,
adapted from Medalia et al., 2002

» Understanding cellular processes at the nanoscale has been stymied by the lack of
practical means of analysis of cellular nanoscale architecture



Histology Cannot Measure Cellular Nanoarchitecture

e Conventional microscopic histology images cell micro-architecture
but does not resolve cell structure below ~200-500 nm

« How can we measure the statistical properties of spatial
organization of macromolecular density with nanoscale sensitivity

— Electron microscopy is too variable, cumbersome, and expensive
— Optical techniques?

0% )



The ‘Universe’ of Subdiffractional Microscopy

STED - stimulated
emission depletion
microscopy

STORM - stochastic
optical reconstruction
microscopy

Tissue

LSSIM — laser scanning
structured illumination
microscopy

<>

PWS — partial wave
spectroscopic
microscopy

STORM STED

Cells

ISOCT — Inverse Stochastic <« Deterministic

spectroscopic optical
coherence tomography



Superresolution Microscopy:
Stimulated Emission Depletion (STED) Microscopy
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Superresolution Microscopy:

Stochastic Optical Reconstruction Microscopy (STORM)

STED

STORM

Conventional fluorescent microscopy
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Sensing Subdiffractional Structure:

What Is ‘Structure’?

Refractive index (n) ~ local concentration of macromolecules (p):
n=n,+op

Refractive index correlation function, B, (r), formulation
Whittle-Mattern family

Shape factor D:

Gaussian: ) — oo

exponential: [) = 4

stretched exponential: 3 < D < 4
Kolmogorov / von Karman: ) =11/3
Henyey-Greenstein: D = 3

power law: D < 3

D=500
D=400
D =367
D=3.00
D=2380
D=240




Sensing Subdiffractional Structure:
What Is ‘Structure’?

» Refractive index (n) ~ local concentration of macromolecules (p):
n=n,+op
» Refractive index correlation function, B,(r), formulation




Partial Wave Spectroscopic (PWS) Microscopy:
Spectroscopy + Microscopy for Nanoscale Sensing

Physics: Novel theory of the statistical properties of light scattering by coherence volume-restricted

complex structures with nanoscale details

Technology: Interference between a reference wave and light scattered by refractive index variations

within a coherence volume

—  Second order spectral statistics () of coherence volume-restricted interference signal is uniquely sensitive to sub-

diffractional length scales

Application: Sensing intracellular nanoscale architecture

Fundamental Research:
Physics
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Partial Wave Spectroscopic (PWS) Microscopy:
Spectroscopy + Microscopy
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What is a (pre)-cancerous
cell?

What is
“normal”?

How to win the war on
cancer?
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How to win the War on Cancer:
Risk Stratification and Two-tier Screening

A solution is risk stratification — a
pre-screen to identify patients
most likely to benefit from 2"d-tier
diagnostic tests

pgfﬁgi?é ] » Low-cost (cost effective)

* Primary care setting

 Non-invasive
prescreen

 No/minimal discomfort to

Conventional patlents
cancgr
screening « Sensitive not only to cancers
. but also to preventable
Neoplasia- :
harboring lesions

patient



Genetic / Environmental Field Carcinogenesis and
Colorectal Tumorigenesis

Carcinogenesis )

Field “Fertile” Stochastic mutational Focal tumors/
. S — — > Dvsplasia — > Cancer
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* Field effect exists in lung, head TS 6
and neck, colon, breast, ovarian, field
esophageal, stomach, liver and Carcinogenesis
other cancers.




Chromatin Alterations are One of the Best Markers of
Carcinogenesis

Carcinogenesis )

Field “Fertile” Stochastic mutational Focal tumors/
—

e —> Cancer

Carcinogenesis environment events Dysplasia

Histological normal tissue Histological abnormality

Lung field o
carcinogenesis ysplasia
Nanoscale alterations Microscale alterations
 Nanocytology: chromatin ‘clumping’ in » Histopathology: Chromatin
histologically normal cells in field ‘clumping’ (rough/coarse chromatin) is
carcinogenesis precedes dysplasia one of the best markers of neoplasia

across all solid cancers

Backman et al., Journal of Cancer, 4(3), (2013)



CHROMATIN COMPACTION IN FIELD CARCINOGENESIS:
TEM Evidence

Field CRC

(Human)

Histologically normal rectal cell nuclei
from control patients and those
harboring a pre-cancerous adenoma
elsewhere in the colon, representing
field CRC.

. e
Early CRC
(Rat)

Histologically normal colonic cell
nuclei from control rats and those
treated with azoxymethane (10
weeks, premalignant time point),

representing early CRC.
PLoS ONE (2013), BMC (2014)



Nano-architectural Alterations in Histologically-Normal
Cells in Field Carcinogenesis

Cells from buccal epithelium (cheek cells)

Cytoplasm

RER
Nucleus

RER
Nucleus

Disorder Strength L, (um)

Cytoplasm

Lung Cancer — Non small cell
Cancer Research, 70, 7748 (2010)




Disorder Strength of Histologically-Normal Buccal Cells Is
Increased in Patients With Lung Cancer

*p<0.001
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STUDY DETAILS

Blinded study design

Cells Brushed from Buccal Mucosa
Tumor Location: Lung

283 subjects

30 cells per patient

STUDY RESULTS

Sensitive to lung cancer irrespective of
 Stage
 Type and sub-type
* Risk and demographic factors

Nanocytology Performance:
Smokers vs. lung cancer

Sensitivity 89%

Specificity 95%

Cancer Research, 70 (2010)



Disorder Strength of Histologically-Normal Rectal Cells Is
Increased in Patients With Adenomas Elsewhere in the Colon
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State-of-the-art FOBT
Sensitivity 11%

STUDY DETAILS

Blinded study design

Cells Brushed from Rectum
Adenoma Location: Colon
306 subjects

30 cells per patient

STUDY RESULTS

Sensitive to adenomas irrespective of
* Adenoma location
* Risk and demographic factors
» Colitis & other non-neoplastic lesions

Nanocytology for patients
with advanced adenomas

Sensitivity 85%
Specificity 85%
FIT Fecal DNA

34% 17%
Cancer Research, 72 (2012)




Disorder Strength of Prostate Cells Is Increased in Patients
With Aggressive Versus Indolent Cancers

Tumor:

prostate cancer
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STUDY DETAILS

» Blinded study design

» Nanocytology on prostate biopsy sections

* Prostate biopsy — patients are followed to
identify aggressive vs. indolent cancers

o 38 subjects

STUDY RESULTS

Distinguishes aggressive versus indolent
prostate cancers

Nanocytology predicts
aggressive versus indolent
prostate cancers

Sensitivity 80%

Specificity 88%




Nanoscale Alterations: A Universal Event in Carcinogenesis
(7 Organ sites, 816 Subjects)

e Lung cancer: buccal cells

e Colon adenomas: rectal cells

* Prostate cancer: aggressive versus indolent cancers
« Ovarian cancer: endocervical cells

 Esophageal dysplasia: upper esophageal cells

e Pancreatic cancer: duodenal cells

 Thyroid cancer



CAUSES: Nanoarchitectural Chromatin Alterations Are
a Common Outcome of Multiple Molecular Pathways
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CONSEQUENCES: Nanoenvironment Affects Gene

Expression
Simplified 1D gene expression process:
e Transcription
* DNA-histone interaction
» Accessibility to transcription factors
* DNA dehybridization (DNA-helicase activity)

» Post-transcriptional modifications
« MRNA diffusion from nucleus to RER
« MRNA degradation by miRNA, etc.

* Translation
* Protein synthesis

 Post-translational modifications
 Protein folding
» Accessibility of chaperons

3D gene expression process:

« 3D chromatin packing
» Gene co-localization and co-expression

Gene + a
*Regulators (TF)

!

MRNA
(nucleus)

MRNA
(cytoplasm)
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Protein
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Nanoenvironment Affects Transcription Non-linearly:
Systems Molecular Biophysics

MD simulations
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Chromatin Compaction in Early Carcinogenesis:
Implications on Transcription
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Control rat

AOM-treated

FIELD CARCINOGENESIS:

Multiple Alterations Precede Tumors

Carcinogenesis
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Detecting ECM and Microvascular Alterations Using ISOCT
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SOCIETAL IMPLICATIONS:
Population Screening

ANNUAL POPULATION SCREENING CANCER SURROGATE
DURING ANNUAL EXAM SITE SITE

ﬂ Colon Rectum

Cells brushed from an easily Pancreas Duodenum

accessible surrogate site _
ﬂ Lung Oral Cavity

Ovary Uterus/Cervix

General
population

Nanocytolo rescreen: Increase in
Nanocytology ytology p

(PWS) disorder of cell nanoarchitecture Esophagus Upper

Esophagus

prescreen Neoplasia No Neoplasia

Bladder Urine

Conventional
- cancer
screening

Neoplasia-
harboring

patient Identification of patients at risk

for harboring neoplasia

U

Most patients are screened
Patients are more compliant
Better allocation of healthcare resources




Prostate 217,730 28% _ 207,090

Lung & bronchus 116,750 15% Lung & bronchus 105,770
Colon & rectum 72,090 9% Colon & rectum 70,480
Urinary bladder 52,760 7% Uterine corpus 43,470
Melanoma of the skin 38,870 5% Thyroid 33,930
Non-Hodgkin lymphoma 35,380 4% Non-Hodgkin lymphoma 30,160
Kidney & renal pelvis 35,370 4% Melanoma of the skin 29,260
Oral cavity & pharynx 25,420 3% Kidney & renal pelvis 22,870
Leukemia 24,690 3% ) ; Ovary 21,880

Pancreas 21,370 3% Pancreas 21,770

All Sites 789,620 100% All Sites 739,940

Estimated Deaths

Males Females
Lung & bronchus 86,220 29% _ Lung & bronchus 71,080
Prostate 32,050 11% Breast 39,840
Colon & rectum 26,580 9% . Colon & rectum 24,790
Pancreas 18,770 6% Pancreas 18,030
Liver & intrahepatic bile duct 12,720 4% Ovary 13,850
Leukemia 12,660 4% Non-Hodgkin lymphoma 9,500
Esophagus 11,650 4% Leukemia 9,180
Non-Hodgkin lymphoma 10,710 4% Uterine Corpus 7,950
Urinary bladder 10,410 3% i Liver & intrahepatic bile duct 6,190

Kidney & renal pelvis 8,210 3% Brain & other nervous system 5,720
All Sites 299,200 100% 4 All Sites 270,290

[ 1Clinical data
[1Potential/planned Jemal, A. et al. CA Cancer J Clin 2010
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