

BIOMATERIALS IN DRUG DELIVERY SYSTEMS

2014 Indo-American Frontiers of Engineering Symposium

Prof. Dhirendra S. Katti

Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur

Outline

- Biomaterials
- Applications of biomaterials
- Drug delivery
- Recent developments through examples
- Conclusions & Future challenges

Proceedings of a Consensus Conference of the European Society for Biomaterials, England, 1987.

Image courtesy: MIT OCW

Vascular Graft

Drug Delivery

'Drug delivery' involves the design and development of intelligent cargo carrier systems that can deliver their cargo (pharmaceutical/biological agent) to specific parts (organs/tissues/cells) in the human body on demand with control on the rate of delivery

Challenges in Drug Delivery

Controlled Drug Release in Colon

- For treatment of colon diseases such as Inflammatory bowel disease, amoebic dysentery, Crohn's disease and ulcerative colitis
- To delay drug absorption after oral intake of the drug
- Protect drugs from harsh acidic environment of the stomach

Maroni A. et. al., Advanced Drug Delivery Reviews 2012.

Inulin particles release drug specifically in the colon and at a controlled rate with 60% of the drug being released over a period of 18-20 hours

Katti et al., Unpublished Data (IIT Kanpur, India)

Challenges in Drug Delivery

Targeted drug delivery

Following Tasks Can Be Performed Simultaneously

- Diseased cell recognition
- Reporting detection
- Diagnosis of disease state
- Drug delivery
- Reporting outcome of therapy

Cancer: A need for drug targeting				
Cancer is a group of diseases in which cells divide and grow uncontrollably, and invade nearby parts of the body				
Cancer Related Deaths				
Worldwide USA	8.2 Million 0.58 Million			

Traditional chemotherapy has many side effects because it acts on all rapidly dividing cells of the body Side effects may be reduced if the drugs are selectively targeted to tumor tissue rather than administered systemically

Cancer Facts and Figures 2014, American Cancer Society.

Targeting Drugs to Endothelial cells

13

- Endothelial cells play a crucial role in tumor development
- Tumor survival is highly dependent on blood vessels which are comprised of endothelial cells
- Targeting endothelial cells may help in delivering therapeutics to tumor vasculature

Targeting Endothelial Cells via Lipid Rafts

Shastri V.P. et al., PNAS 2014 (University of Freiburg, Germany).

Charge vs. Lipophilicity

Shastri V.P. et al., PNAS 2014 (University of Freiburg, Germany).

Specific Targeting to Endothelial Cells

Polystyrene sulfonate lipid nanoparticles are endocytosed in caveolin dependent manner specifically by endothelial cells over epithelial cell types

Challenges in Drug Delivery

17

Aggarwal P., Advanced Drug Delivery Reviews 2009.

Need for Crossing Tissue Barriers: Eye

Scleratis Choro Sclera	idal melanoma <mark>Choroid</mark>	Glaucom Retina	a Diabetic retinopathy Retina
DISEASES	WORL (In Millio	.D ns)	INDIA (In Millions)
Visual impairment	285		53
Blind	39		78
Glaucoma	3.12		.55
Retinal Diseases	2.34		.45

Bulletin of the World Health Organization, 2012, (1-14)

Current Drug Delivery Strategy to Eye

Side effects:

- Repeated injections can cause pain and discomfort
- Increase in intra ocular pressure and intraocular bleeding
- Increased chances of infection
- Possibility of retinal detachment

Crossing Tissue Barriers in the Eye

- 1. Investigative Ophthalmology & Visual Science, 38 (1997) 627-634
- 2. Molecular Vision, 19 (2013) 1198-1210
- 3. Investigative Ophthalmology & Visual Science, 47(2006) 4513-4522
- 4. Investigative Ophthalmology & Visual Science, 46 (2005) 641-646

20

Pathway of Drug Delivery

Katti et al., Unpublished Data (IIT Kanpur, India)

Pre-clinical Evaluation: Fundoscopy Study

PCL-PF68 nanoparticles caused a decrease in neovascularization

Katti et al., Unpublished Data (IIT Kanpur, India)

22

Immunohistochemistry : Anti-VEGF antibody staining

PCL-PF68 particles loaded with TCA showed less VEGF expression

Challenges in Drug Delivery

Reaching Target Tissue and Cells: Brain ²⁵ Tumor

- Brain glioma most aggressive and lethal cancer
- Limited treatment strategies available
- Challenges: crossing blood brain barrier, building drug concentration without regional/systemic toxicity

Ljubimova J.Y. et al., PNAS 2010 (Cedars Senai Medical Center, USA).

Pre-clinical Study in Mice

75

- 70

65

55

50

45

P/LLL/AON/Hu

P/LLL/AON/Hu/Ms

Anti Mouse Transferrin Antibody (Ms) For crossing **BTB** alone

Anti Human Transferrin Antibody (Hu) For targeting to tumor

Combination of both Anti mouse and Anti human transferrin antibodies **Crossing BTB** and targeting tumor tissue

Ljubimova J.Y. et al., PNAS 2010 (Cedars Senai Medical Center, USA).

Control: NH₂ – Leu – Leu – Leu – Ethyl ester

Ljubimova J.Y. et al., PNAS 2010 (Cedars Senai Medical Center, USA).

Conclusions & Future Challenges

 Endosomal escape accompanied by lysosomal rupture may be associated with cytotoxicity

28

- Due to variation in tissue properties like size, results from small animals may not be directly extrapolated to humans
- Antibodies specific to a receptor does not always ensure cell specific targeting *in vivo*
- Simultaneous controlled release of hydrophilic and hydrophobic drugs has not been achieved

Acknowledgement

- Funding Agencies: Department of Biotechnology (DBT)
 Department of Science & Technology (DST)
 Indian Council of Medical Research (ICMR)
- IIT Kanpur
- Sudents Binapani, Arvind, Vishesh

Thank You!!!