Nanosensors

Co-Chairs:

Angela Violi, University of Michigan Ian Kinloch, University of Manchester

Introduction

"Nano" - one dimension less than 100 nm in length

 Naturally, given the importance of measurement and detection in the field, sensors are major application area.

Sensors

3. Signal Transducer

In the case of nanosensors the goals are:

- Next generation of lab & industrial sensors (single molecule)
- Next generation healthcare for pharma and personalised medicine

Why nano? – Unique properties

Quantisation - Optical

Vibrational resonance

Why nano? - Size

- Faster response time
- Lower analyte consumption
- •Sensitivity
- •Larger surface and contact areas
- Interface with biology, e.g. using DNA and protein aptamers to detect the signal
 Multiplexing (measuring multiple
- analytes simultaneously)
 - \Rightarrow Lab on a chip
- Intracellular sensing

DNA/mRNA

Intra cellular

Challenges

- Selectivity
- Sensitivity
- Device design
 - New Materials
 - Fluid handling and behaviour
 - Array printing
 - Data handling and interpretation
- Production and scale-up
- Commercialisation

Programme

- Nanofluidics and 2D Materials-Based Nanosensors
 Ivan Vlassiouk, Oak Ridge National Lab
- Development of Microfluidic Devices for High-Throughput Biological and Chemical Analysis

Andrew de Mello, ETH Zurich

********** CONFERENCE DINNER *********

 Single Molecule Detection Systems in Clinical Diagnostics and Drug Screening

Fredick Höök, Chalmers University

 Population-Based Comprehensive Health Monitoring for Combating Infectious Diseases and Bioterror

Conrad D. James, Sandia National Lab