

Mechanics and Materials of Bio-Integrated Electronics

Nanshu Lu, PhD

Department of Aerospace Engineering and Engineering Mechanics Center for Mechanics of Solids, Structures and Materials Texas Materials Institute The University of Texas at Austin

September 21, 2013

Roadmap

- Motivation
- Deformability of polymer-supported metal and silicon thin films
- Case Study
 - Non-Invasive
 - Epidermal electronics
 - Electrotactile finger tube
 - In Vivo
 - Instrumented balloon catheter
 - Cardiac web
- Outlook

Bio-Integrated Electronics

Health Monitoring

Implantable Electronics

Assistive Devices

Surgical Tool

Human-Machine Interface

Fundamental Challenge

Soft Resilient Curvilinear Dynamic

Center for Mechanics of Solids, Structures and Materials

 \mathbf{S}

THE UNIVERSITY OF TEXAS AT AUSTIN

Desired Properties

Mechanics

- Conformable
- Stretchable
- Robust binding without detachment

Materials

- High-performance
- Biocompatible
- Bioresorbable

Functionality

• Electrical, mechanical, thermal, optical, biomedical

Cost, Power, Weight, Size

Minimal

Polymer-Supported Metal and Silicon Films

Won, Kim, Lu, Rogers, IEEE Transactions on Electron Devices 58, 4074 (2011).

Solids, Structures and Materials

Stretchability of Blanket Metal on Polymer

Lu, Wang, Suo, Vlassak, *Applied Physics Letters* 91, 221909 (2007). Lu, Wang, Suo, Vlassak, *Journal of Materials Research* 24(2), 379-385 (2009). Lu, Suo, Vlassak, *Acta Materialia* **58**, 1679-1687 (2010).

Bendability of Silicon

 $\frac{TEXAS}{TEXAS}$

Stretchability of Si-Based Electronics

Buckled Ribbons

Sun *et al.*, *Nature Nanotech*. **1**, 201 (2006).

2D Wavy Membrane

Choi *et al.*, *Nature Lett.* **7**, 1655 (2007).

Si Islands + Interconnects

Kim et al., PNAS 105, 18675 (2008).

Stretchability of Serpentines

Unknowns: w/R, l/R, α **Constraints:** 1). No overlap (X = 0); 2). Y/w=fixed; 3). Min. $\varepsilon_{max} / \varepsilon_{app}$

Widlund, Yang, Lu, to be submitted (2013).

Center for Mechanics of Solids, Structures and Materials

0.02%

Stretchability of Brittle Islands

Sun, Lu, Suo, Vlassak et al., J. Mater. Res. 24, 3338 (2009).

Solids, Structures and Materials

Electronics On Various Substrates

Kim, Rogers *et al.*, *Adv. Mater.* **21**, 3703 (2009). Kim, Rogers *et al.*, *Nature Mater.* **9**, 929 (2010).

Micro-Transfer Printing Technique

Case Study

- Non-invasive
 - Epidermal Electronics: extreme compliance, non-invasive
 - Wearable Finger Tube
- In Vivo
 - Balloon Catheter: extreme expandability,
 - Cardiac web

Polymer on Skin

Stiff and thick PDMS E = 145 kPa, h = 0.6 mm

Soft and thin PDMS E = 19 kPa, h = 0.3 mm

Compliance and Stretchability

Kim*, Lu*, Ma* (*equal contribution), Rogers, et al., Science 333, 838, (2011).

Thinning Down

Mounting and Removal

Sample credit: Dae-Hyeong Kim, Nanshu Lu Arm credit: Dae-Hyeong Kim Video credit: Yun-Soung Kim

Extreme Compliance & Conformability

Yeo, Rogers, et al, Advanced Materials 25, 2773–2778 (2013).

EMG Sensing

In collaboration with Todd Coleman, UCSD BME

right

left

Kim*, Lu*, Ma* (*equal contribution), Rogers, et al., Science 333, 838, (2011).

Apps

Kim*, Lu*, Ma* (*equal contribution), Rogers, et al., Science 333, 838, (2011).

Electrotactile Stimulators on Wearable Finger Tube

Ying, Bonifas, Lu et al., Nanotech 23, 344004 (2012).

Balloon Catheters

Angioplasty balloon catheter

Balloon atrial septostomy

T E X A S

Instrumented Balloon Catheter

Kim*, Lu*, Ghaffari* (*equal contribution), Rogers, et al., Nature Mater. 10, 316 (2011).

Sensing and Therapeutics

In collaboration with Marv Slepian, U of Arizona

Kim*, Lu*, Ghaffari* (*equal contribution), Rogers, et al., Nature Mater. 10, 316 (2011).

Stretchable Strain Gauges

Kim*, Ghaffari*, Lu* (*equal contribution), Rogers, *et al.*, *PNAS* **109**, 19910 (2012). Yang, Lu, *Sensors* **13**, 8577-8594 (2013).

In Vivo Epicardial Sensing

Kim*, Ghaffari*, Lu* (*equal contribution), Rogers, et al., PNAS 109, 19910 (2012).

What's Next?

Interface

- Adhesion
- Implantable
- Biochemical
- Actuation

Power

- Li-ion battery
- Supercapacitor
- Energy harvesting
- Wireless transmission

Data

- Memory
- Near field
- RF (blue tooth)

Acknowledgement

Mobile Energy Technologies

Collaborators:

Prof. Dae-Hyeong Kim, SNU Prof. Juejun Hu, Univ. of Delaware Prof. Ken Liechti, UT Austin Prof. Deji Akinwande, UT Austin Prof. Edward Yu, UT Austin Prof. Ken Diller, UT Austin