

Crowd Computing

Robert C. Miller

MIT CSAIL

rcm@mit.edu

ABSTRACT

Crowd computing harnesses the power of people out in the

Web to do tasks that are hard for individual users or

computers to do alone. Like cloud computing, crowd

computing offers elastic, on-demand human resources that

can drive new applications and new ways of thinking about

technology. This paper describes several prototype crowd-

computing systems we have built, including Soylent, a

Word plugin that crowdsources text editing tasks; VizWiz,

an app that helps blind people see using a crowd’s eyes;

Adrenaline, a camera shutter driven by crowd perception;

and Caesar, a system for code reviewing by a crowd of

programmers. Crowd computing raises new challenges at

the intersection of computer systems and human-computer

interaction, including improving quality of work,

minimizing latency, and providing the right incentives to

the crowd. We discuss the design space and the techniques

we have developed to address some of these problems.

INTRODUCTION

Crowd computing is the coordination of a large group of

people connected over the Web, each making a small

contribution toward the solution of a problem that can’t

currently be solved by software or one user alone. Other

names exist for this approach. One such name,

crowdsourcing (Howe 2006), coined by analogy to

outsourcing, emphasizes how the approach challenges

traditional employment models by recruiting people for

very short-term work, usually with incentives other than

money. Another name, human computation (Law & von

Ahn 2011), emphasizes the use of people as components of

a computing system, computing functions that require

human perception, cognition, or knowledge that is currently

beyond the reach of artificial intelligence. In contrast, the

crowd computing name is instead inspired by cloud

computing (Hamdaqa & Tahvildari 2012), which refers to a

system in which highly-available, elastic computational and

storage resources are available over a network. Crowd

computing systems obtain the same benefits with human

resources: a networked crowd that can grow and shrink and

is available when needed.

Recent years have seen a number of successful crowd

computing systems, with a variety of incentives drawing the

crowd together, including volunteering, fun, social, and

pay. Prominent examples of volunteer-driven systems

include Wikipedia
1
 and citizen science projects like Galaxy

1
 http://wikipedia.org

Zoo.
2
 For crowds looking for fun, games with a purpose

(von Ahn & Dabbish 2008) manage to do useful work as a

side-effect of playing the game, like tagging images with

keywords in the ESP Game (von Ahn & Dabbish 2004) or

discovering how to fold proteins in FoldIt (Cooper et al.

2010). Crowds connected on social networks like

Facebook and Twitter can also produce useful work, even

from small contributions from each person. For example,

the tagging of people’s faces in Facebook photos enables

Facebook to train and improve automatic face recognition.

Crowds can also be paid to do work, as on sites like

Amazon Mechanical Turk
3
, or MTurk. Named after an 18

th

century chess-playing automaton, which was actually a

hoax because a human chess master was hidden inside it

making the actual moves, MTurk is a web service in which

people, not computers, do the actual work. On MTurk, a

requester can post a job, called a Human Intelligence Task

(HIT), typically paying 5-50 cents and taking seconds or

minutes to do. A worker accepts the task, completes it in

the web browser, and submits their work to the requester

for payment.

MTurk is an increasingly important resource for social

science experimentation (Mason & Suri 2012), and its

demographic characteristics (Iperoitis 2010) and ethical

implications (Silberman et al. 2010; Bederson & Quinn

2011) have been investigated. Other online labor

marketplaces have also arisen, including CrowdFlower
4
,

MobileWorks
5
, and oDesk

6
. But MTurk continues to be

unique in that all of the requester’s interaction can be

automated with an application programming interface

(API). MTurk can therefore be integrated into a system that

otherwise consists entirely of software. MTurk is thus the

first example of a paid crowd computing utility – a resource

of human intelligence that is highly-available, elastic, and

programmable, and that can be a building block in a system.

Even for systems that will eventually be powered by other

crowd motivators – volunteerism, fun, or social interaction

– MTurk provides a way to prototype and develop the

system itself, without having to simultaneously undertake

2
 http://www.galaxyzoo.org

3
 http://www.mturk.com

4
 http://crowdflower.com

5
 http://www.mobileworks.com

6
 http://www.odesk.com

the substantial challenge of building and managing an

online community (Kraut & Resnick 2012).

This paper describes some recent explorations into crowd

computing systems, mostly but not all prototyped on top of

MTurk. The systems explore new approaches to three key

metrics of crowd work: the quality of the work; the latency,

or time required to get work back; and the incentives

involved in motivating people to contribute. The systems

range over a variety of application domains, including

handwriting transcription, document editing, assistive

technology for the blind, and help for students learning

programming, illustrating that crowd computing is a

broadly-applicable approach in many domains. We

conclude with a discussion of the design space for crowd

computing, looking toward a future in which crowds are a

common component of the toolkit used by software system

designers.

IMPROVING QUALITY

Work obtained from human crowds can be unreliable.

People can misunderstand instructions and make mistakes,

and some people provide maliciously wrong. Removing

this noise from a crowd computing system is generally done

in one of four ways:

(a) redundancy, where multiple people are asked to do

the same task, and their answers are aggregated

automatically, using averaging, majority vote, or

machine learning (Sheng, Provost, & Ipeirotis

2008);

(b) rating, where one person does the work and a

different group of people is asked to rate or vote

on the quality of the answer;

(c) gold-standard tasks, where the system includes

tasks with already-known answers among the work

a person is asked to do, and uses the person’s

performance on those tasks to decide whether to

accept or reject their other work (Oleson et al.

2011);

(d) behavioral measures, where the system observes

secondary metrics about how the work was done,

such as how much time was spent working or the

amount of scrolling in the web browser, to

distinguish helpful workers from unhelpful ones

(Rzeszotarski & Kittur 2011).

Our own work has studied ways to incorporate quality-

control measures like these into a workflow for a complex

cognitive task. For example, the Improve-and-Vote

workflow (Little et al. 2010) is an iterative process in which

one person tries to improve an artifact and another group of

people votes on whether the change actually was an

improvement. Figure 1 shows how Improve-and-Vote can

be used to transcribe a messy handwriting sample

collaboratively. We have also applied the idea to

brainstorming and image captioning (Little et al. 2010).

Although Improve-and-Vote can be very effective for

producing a quality result, it can be slow and costly to run.

A decision-theoretic control approach has been proposed to

optimize it (Dai, Mausam & Weld 2010), which maintains

belief estimates of artifact quality and worker ability and

uses those estimates to automatically decide when the

system should ask for a vote, ask for an improvement, or

stop the process. One cost-saving rule of thumb from these

decision-control experiments is that the first few iterations

can usually be run with no voting at all, since successful

improvement is very likely in those iterations.

We have also developed a workflow for document editing,

called Find-Fix-Verify (Bernstein et al. 2010). The

workflow is illustrated in Figure 2. In the Find step,

redundant workers identify problems in the text, and only

problems identified by at least two workers are kept. In the

Fix step, other workers propose edits to fix the problems,

and the Verify step uses rating to keep only the best edits.

We incorporated this workflow into a Microsoft Word

plugin, called Soylent, to implement two features,

proofreading and text-shortening. Soylent demonstrates

that crowd work can be integrated as a component of an

interactive system, and used in a way that feels like a

feature of the user interface.

Figure 1: Improve-and-Vote workflow applied to handwriting

transcription.

Figure 2: Find-Fix-Verify workflow used to trim unnecessary

text from a document.

IMPROVING LATENCY

Our recent work has focused on realtime crowdsourcing, in

which the crowd’s help is needed within seconds in order to

support an interactive application. Examples of interactive

applications we have built that depend on realtime crowds

include VizWiz (Bigham et al. 2010), a smartphone app

that allows a blind user to take a picture, ask a question

about it, and get answers from a crowd in less than a minute

(Figure 3); and Adrenaline (Bernstein et al. 2011), a camera

app with a “crowd-controlled shutter”, which captures a

short video and sends it to a crowd to choose the best frame

to keep, getting the answer back in seconds.

Over the past year, our work in realtime crowdsourcing has

produced several findings. First, we have developed a new

technique, the retainer model, that has crowd members

ready to help on demand by recruiting them in advance and

paying them a retainer to wait for a short time. Our

experiments with the retainer model on Mechanical Turk

found that when workers were put on retainer and then

recalled in five minutes, 50% responded within two

seconds, and 75% within three seconds, making this

approach feasible for an interactive application (Figure 5).

Using these empirical results, we developed a theoretical

model of retainer pools that would allow a system designer

to predict the size of the pool required to obtain a desired

low response time and low probability of failing to have

enough workers ready. This model also enabled us to

devise and test a new technique, precruitment, which recalls

the workers a few seconds before the request even arrives,

in order to mask the 2-second latency of recall (Bernstein et

al. 2012).

A second finding is an improvement in quality control for

realtime crowdsourcing. Normally, quality control (e.g.

voting or looking for agreement between crowd members)

adds extra latency to the crowd’s work, which slows down

the response. To counter this, we developed the rapid

refinement algorithm, which guides a crowd to agree on a

point in a continuous parameter space (e.g. the best time

point in a video) and to do so very quickly. In the

Adrenaline camera app, we found that rapid refinement

took 3-5 workers a median time of 11 seconds to agree on

the best frame of a video, which was several seconds faster

than just taking the first answer (no quality control at all),

and more than three times faster than voting. We are

currently exploring how to apply the ideas of rapid

refinement to other domains, such as question answering,

web searching, and audio selection.

CROWDS WITH OTHER INCENTIVES

A final consideration in crowd computing system design is

the set of incentives that power the system. In the previous

systems – Soylent, VizWiz, Adrenaline – the crowd is

drawn from Mechanical Turk and motivated by pay. In

reality, however, crowd computing is liable to be deployed

on a crowd driven by a variety of incentives, including

altruism, social reciprocity, and entertainment.

Some of these issues have come up in a crowd-computing

system we have developed for classroom use at MIT.

Caesar is a code reviewing system that allows a mixed

crowd of students, alumni, and teaching staff to collaborate

on reviewing student programming assignments. Each of

these groups has different incentives. Students are

motivated extrinsically by grades and intrinsically by a

desire to learn. Teaching staff are motivated extrinsically

by pay and intrinsically by a desire to impart knowledge.

Alumni are motivated intrinsically by altruism, and

extrinsically (in our experience) by a desire to meet

students and recruit them for summer internships and full-

time jobs. When these varying incentives come together in

a system, it increases the complexity of the design problem.

The Caesar system has been deployed in several semesters

of an MIT software engineering course, 6.005 Software

Construction. So far, Caesar has been used to review 13

problem sets, comprising roughly 2500 student submissions

by roughly 390 undergraduate students. Counting those

students, plus alums and teaching staff, over 500 people

have done reviewing, and together they have made more

than 21,000 comments on student work.

With the new system, students received written comments

about their programs within 3 days after submitting them,

considerably faster than the several weeks it often takes for

Figure 3: The VizWiz system allows a blind person with a

smartphone to take a photo and speak a question about it, and

get the question answered by members of a crowd.

Figure 4: The retainer model recruits crowd workers before

they are needed. Experiments on Mechanical Turk show that

with a short retainer interval of 5 minutes, roughly half the

retained workers are ready to work within 2 seconds after

being called on.

graders. This fast turnaround time enabled us to institute a

“returnin” policy that allows students to revise and resubmit

their programs in response to the comments, in order to

improve their grade. The average program was reviewed

by 10 different reviewers and received 9.6 comments.

An analysis of a sample of comments showed evidence that

the crowd interaction promoted learning, particularly from

weaker students reviewing stronger students’ solutions. For

example: “Student: This is interesting. Why do you store all

the messages you send/receive in a log? Code author: For

debugging. The log adds time stamps, which help a lot for

debugging concurrency problems.”

We found that most comments in the sample were useful

critiques (bugs, clarity, performance, simplicity, or style);

some were evidence of learning on the part of the reviewer

(as mentioned above) or positive reinforcement of

something specific that was good about the code. A

fraction of comments (roughly 15%) were some form of

“looks good to me,” which may have been true, but meant

that neither the reviewer nor the code author learned

anything from that interaction. Turning this around,

however, the remaining 85% of the comments in the system

did indicate some degree of learning opportunity had been

created by Caesar that didn’t exist before, which we take as

highly positive, with room for improvement.

One lesson learned is the importance of choosing the right

code to review. Programming assignments typically have a

lot of uninteresting code – staff-provided code, test cases,

tiny exception classes – and an automatic code reviewing

system must be smart about what is worth assigning to code

reviewers. Caesar had a few early bugs in its reviewing

assignment algorithm that led to boring reviewing for the

reviewers and unhelpful feedback for the code authors. If

the crowd had consisted of paid workers, this may have

been less of a problem, but for a crowd with varying

incentives, the value of the work can suffer when those

incentives are not met.

THE CROWD COMPUTING DESIGN SPACE

Software system designers already have a variety of tools in

their design toolbox, including programming languages,

platforms, frameworks, libraries, and design patterns.

These software tools, in combination with human end-users

operating and interacting with the resulting system, have

had enormous impact over the last 50 years of the

computing era, affecting virtually every sphere of human

activity (NRC 1995, NRC 2012). Crowd computing

introduces a new kind of component to this toolbox: a

crowd of people making small contributions at the system’s

behest, and coordinated by automatic algorithms. The

human intelligence embodied in a crowd has the potential

to change how we build and deploy software systems in

significant ways.

One such change is the notion of deployable Wizard-of-Oz

prototyping. Wizard-of-Oz prototyping is a tried-and-true

technique for experimenting with ideas in artificial

intelligence or human-computer interaction that are

currently hard or impossible to build. Essentially, a human

simulates the system, doing manually what software will

eventually do automatically, acting like the “man behind

the curtain” (hence the term Wizard of Oz). Wizard-of-Oz

prototyping was used in early experiments with speech

recognition (Gould, Conti & Hovanyecz 1982), and has

been widely used in user interface design with techniques

like paper prototyping (Snyder 2003). In the past, Wizard-

of-Oz prototyping was limited to laboratory use, since the

wizard had to be present in order to simulate. With crowd

computing, however, the crowd can take the role of the

wizard, using their human intelligence for problems that we

don’t know how to solve with software yet. Since the

crowd is networked and highly available, a Wizard-of-Oz

system that uses a crowd can escape the laboratory, and be

deployed for real-world use by real users. The VizWiz

system is one example. Thousands of blind users have

installed it on their phones, and over 40,000 questions have

been asked, shedding important light on the kinds of

information needs that blind people have and how they ask

their questions (Brady et al. 2013). Recent web startups

have also used this technique of bootstrapping a system

with crowd work (Yoskovitz 2011). Using a crowd-driven

Wizard of Oz prototype has two benefits. First, it allows

the system to be deployed much sooner, in order to learn

whether users actually need it, and help it evolve faster to

meet user needs. Second, it allows the system to start

building a corpus of data – such as photos and questions

asked by blind users, along with answers given by crowd

workers – which are essential for training machine learning

algorithms. After enough data has been collected, artificial

intelligence can be introduced into the system to handle

tasks that computers can do. This shifts work away from

the crowd, reducing the cost of crowd labor, while still

keeping the crowd available for the hard tasks that we don’t

know how to do with AI.

In our experience of developing crowd-powered systems,

we have made many mistakes and learned a few lessons. A

design handbook for crowd computing has yet to be written,

but a few principles are known. First, it helps to divide

work into chunks that are as small as possible (for

parallelism and fault-tolerance), but not so small that the

worker loses necessary context. Second, a system designer

should expect noise (poor quality work), even from the

highest-quality crowd, and design for it, for example using

workflows like Find-Fix-Verify that incorporate quality

control mechanisms. Third, a designer must keep in mind

that crowds are powered by a variety of incentives, and

make sure that the system aligns with and supports those

incentives, or the crowd may drain away.

Finally, when deciding whether a particular system would

benefit from the crowd component in the toolbox, it’s

important to think about what the crowd brings to the

system. Most systems already have human users

interacting with them or operating them, so human

intelligence is already part of the system, broadly

construed. So what benefit does the crowd bring? One

benefit is diversity: the crowd has diverse skills,

perceptions, and opinions, and even the different user

interface presented to the crowd (typically small bits of

work) may enable them to see things and do things that the

primary end-users of the system do not. Another benefit is

different competence: the crowd may have abilities that the

end-users of the system do not. The VizWiz system

demonstrates this property most strongly, since the crowd

has vision, but the blind end-users do not. Other kinds of

different competence may include language skill, technical

expertise, or even physical location in the world. If

diversity or different competence are important to the

human intelligence needs of your system, then a crowd may

be the right tool for the job.

CONCLUSION

Crowd computing draws on the power of people on the

Web to do tasks that are hard for individual users or

computers to do alone. This paper has presented several

examples of crowd computing systems that we have built,

in domains ranging from handwriting transcription, to

document editing, to assitive technology for the blind, to

classroom code reviewing. We have used these example

systems to illustrate some of the challenges of crowd

computing, including quality control, latency, and incentive

management. One of the exciting aspects of crowd

computing as a field is its potential for injecting human

intelligence into a variety of software systems, and using it

as a springboard to artificial intelligence.

ACKNOWLEDGMENTS

Many students and collaborators contributed to this work,

including Greg Little, Lydia Chilton, Max Goldman,

Jeff Bigham, Michael Bernstein, David Karger, Mark

Ackerman, Björn Hartmann, Joel Brandt, Mason Tang,

Elena Tatarchenko, Mason Glidden, Kiran Bhattaram, Chris

Graves, Juho Kim, Jones Yu, Adam Marcus, Haoqi Zhang,

and Joey Rafidi. This work is supported in part by Quanta

Computer as part of the Qmulus project, by Xerox

Corporation, by the Ford-MIT Alliance, and by NSF under

award SOCS-1111124. We are also grateful to over 20,000

Mechanical Turk workers who contributed to the systems

we have built over the years.

REFERENCES

Bederson, B. B., and Quinn, A. J. (2011) Web Workers

Unite! Addressing Challenges of Online Laborers.

Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems Extended Abstracts (CHI 2011), pp.

97-106.

Bernstein, M., Karger, D., Miller, R., and Brandt, J.

Analytic Methods for Optimizing Realtime Crowdsourcing.

In Proceedings of Collective Intelligence 2012.

Bernstein, M.S et al. (2010) Soylent: A Word Processor

with a Crowd Inside. In Proceedings of the 23rd annual

ACM symposium on User interface software and

technology (UIST 2010), pp. 313-322.

Bernstein, M.S, Brandt, J., Miller, R.C. and Karger, D.R.

(2011) Crowds in Two Seconds: Enabling Realtime Crowd-

Powered Interfaces. In Proceedings of the 24th annual

ACM symposium on User interface software and

technology (UIST 2011), pp. 33-42.

Bigham, J. et al. (2010) VizWiz: Nearly Real-Time

Answers to Visual Questions. In Proceedings of the 23rd

annual ACM symposium on User interface software and

technology (UIST 2010), pp. 333-342.

Brady, E., Morris, M.R., Zhong, Y., and Bigham, J.P.

(2013) Visual Challenges in the Everyday Lives of Blind

People. In Proceedings of the ACM SIGCHI Conference on

Human Factors in Computing Systems (CHI 2013), pp.

2117-2126.

Cooper, S. et al. (2010) The challenge of designing

scientific discovery games. Proceedings of the Fifth

International Conference on the Foundations of Digital

Games (FDG 2010), pp. 40-47.

Dai, P., Mausam, and Weld, D. S. (2010) Decision-

theoretic control of crowd-sourced workflows. In

Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence (AAAI 2010).

Gould, J.D., Conti, J., and Hovanyecz, T. (1982)

Composing letters with a simulated listening typewriter. In

Proceedings of the 1982 Conference on Human Factors in

Computing Systems (CHI 1982), pp. 367-370.

Hamdaqa, M. and Tahvildari, L. (2012) Cloud computing

uncovered: a research landscape. Advances in Computers,

v86, pp 41-84.

Howe, J. (2006) The rise of crowdsourcing. Wired. v14, n6,

June 2006.

Ipeirotis, P. (2010) Demographics of mechanical turk.

Technical report, March 2010. http://www.behind-the-

enemy-lines.com/2010/03/new-demographics-of-

mechanical-turk.html

Kraut, R.E. and Resnick, P. (2012) Building Successful

Online Communities: Evidence-Based Social Design.

Cambridge: MIT Press, 2012.

Law, E. and von Ahn, L. (2011) Human Computation.

Morgan & Claypool, 2011.

Little, G., Chilton, L.B., Goldman, M., and Miller, R.C.

(2010) Exploring iterative and parallel human computation

processes. Proceedings of the ACM SIGKDD Workshop on

Human Computation (HCOMP 2010), pp. 68-76.

Mason, W. and Suri, S. (2012) Conducting behavioral

research on Amazon's Mechanical Turk. Behavioral

Research Methods, v44 n1, March 2012, pp. 1-23.

National Research Council (1995). Evolving the High

Performance Computing and Communications Initiative to

Support the Nation's Information Infrastructure.

Washington: National Academies Press, 1995.

National Research Council (2012). Continuing Innovation

in Information Technology. Washington: National

Academies Press, 2012.

Oleson, D., Sorokin, A., Laughlin, G., Hester, V., Le, J.,

and Biewald, L. (2011) Programmatic Gold: Targeted and

Scalable Quality Assurance in Crowdsourcing.

Proceedings of the AAAI Workshop on Human

Computation (HCOMP 2011).

Rzeszotarski, J. and Kittur, A. Instrumenting the crowd:

using implicit behavioral measures to predict task

performance. In Proceedings of the 24th annual ACM

symposium on User interface software and technology

(UIST 2011), pp. 13-22.

Sheng, V.S, Provost, F., and Ipeirotis, P.G. (2008) Get

another label? improving data quality and data mining using

multiple, noisy labelers. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD '08), pp. 614-622.

Silberman, M. et al. (2010) Sellers’ problems in human

computation markets. Proceedings of the ACM SIGKDD

Workshop on Human Computation (HCOMP 2010), pp.

18-21.

Snyder, C. (2003) Paper Prototyping: The Fast and Easy

Way to Design and Refine User Interfaces. Morgan

Kaufmann, 2003.

von Ahn, L. and Dabbish, L. (2004) Labeling images with a

computer game. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI 2004), pp.

319-326.

von Ahn, L. and Dabbish, L. (2008) Designing games with

a purpose. Communications of the ACM, v51 n8, August

2008, pp 58-67.

Yoskovitz, B. (2011) Don't Code What You Can

Mechanical Turk. http://www.instigatorblog.com/dont-

code/2011/05/06/

.

