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ABSTRACT 

Crowd computing harnesses the power of people out in the 

Web to do tasks that are hard for individual users or 

computers to do alone. Like cloud computing, crowd 

computing offers elastic, on-demand human resources that 

can drive new applications and new ways of thinking about 

technology. This paper describes several prototype crowd-

computing systems we have built, including Soylent, a 

Word plugin that crowdsources text editing tasks; VizWiz, 

an app that helps blind people see using a crowd’s eyes; 

Adrenaline, a camera shutter driven by crowd perception; 

and Caesar, a system for code reviewing by a crowd of 

programmers.  Crowd computing raises new challenges at 

the intersection of computer systems and human-computer 

interaction, including improving quality of work, 

minimizing latency, and providing the right incentives to 

the crowd. We discuss the design space and the techniques 

we have developed to address some of these problems.  

INTRODUCTION 

Crowd computing is the coordination of a large group of 

people connected over the Web, each making a small 

contribution toward the solution of a problem that can’t 

currently be solved by software or one user alone.  Other 

names exist for this approach. One such name, 

crowdsourcing (Howe 2006), coined by analogy to 

outsourcing, emphasizes how the approach challenges 

traditional employment models by recruiting people for 

very short-term work, usually with incentives other than 

money.  Another name, human computation (Law & von 

Ahn 2011), emphasizes the use of people as components of 

a computing system, computing functions that require 

human perception, cognition, or knowledge that is currently 

beyond the reach of artificial intelligence.  In contrast, the 

crowd computing name is instead inspired by cloud 

computing (Hamdaqa & Tahvildari 2012), which refers to a 

system in which highly-available, elastic computational and 

storage resources are available over a network.  Crowd 

computing systems obtain the same benefits with human 

resources: a networked crowd that can grow and shrink and 

is available when needed. 

Recent years have seen a number of successful crowd 

computing systems, with a variety of incentives drawing the 

crowd together, including volunteering, fun, social, and 

pay. Prominent examples of volunteer-driven systems 

include Wikipedia
1
 and citizen science projects like Galaxy 

                                                           

1
 http://wikipedia.org 

Zoo.
2
 For crowds looking for fun, games with a purpose 

(von Ahn & Dabbish 2008) manage to do useful work as a 

side-effect of playing the game, like tagging images with 

keywords in the ESP Game (von Ahn & Dabbish 2004) or 

discovering how to fold proteins in FoldIt (Cooper et al. 

2010).  Crowds connected on social networks like 

Facebook and Twitter can also produce useful work, even 

from small contributions from each person.  For example, 

the tagging of people’s faces in Facebook photos enables 

Facebook to train and improve automatic face recognition. 

Crowds can also be paid to do work, as on sites like 

Amazon Mechanical Turk
3
, or MTurk.  Named after an 18

th
 

century chess-playing automaton, which was actually a 

hoax because a human chess master was hidden inside it 

making the actual moves, MTurk is a web service in which 

people, not computers, do the actual work.  On MTurk, a 

requester can post a job, called a Human Intelligence Task 

(HIT), typically paying 5-50 cents and taking seconds or 

minutes to do.  A worker accepts the task, completes it in 

the web browser, and submits their work to the requester 

for payment.  

MTurk is an increasingly important resource for social 

science experimentation (Mason & Suri 2012), and its 

demographic characteristics (Iperoitis 2010) and ethical 

implications (Silberman et al. 2010; Bederson & Quinn 

2011) have been investigated.  Other online labor 

marketplaces have also arisen, including CrowdFlower
4
, 

MobileWorks
5
, and oDesk

6
.  But MTurk continues to be 

unique in that all of the requester’s interaction can be 

automated with an application programming interface 

(API).  MTurk can therefore be integrated into a system that 

otherwise consists entirely of software. MTurk is thus the 

first example of a paid crowd computing utility – a resource 

of human intelligence that is highly-available, elastic, and 

programmable, and that can be a building block in a system.  

Even for systems that will eventually be powered by other 

crowd motivators – volunteerism, fun, or social interaction 

– MTurk provides a way to prototype and develop the 

system itself, without having to simultaneously undertake 
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the substantial challenge of building and managing an 

online community (Kraut & Resnick 2012). 

This paper describes some recent explorations into crowd 

computing systems, mostly but not all prototyped on top of 

MTurk. The systems explore new approaches to three key 

metrics of crowd work: the quality of the work; the latency, 

or time required to get work back; and the incentives 

involved in motivating people to contribute.  The systems 

range over a variety of application domains, including 

handwriting transcription, document editing, assistive 

technology for the blind, and help for students learning 

programming, illustrating that crowd computing is a 

broadly-applicable approach in many domains. We 

conclude with a discussion of the design space for crowd 

computing, looking toward a future in which crowds are a 

common component of the toolkit used by software system 

designers. 

IMPROVING QUALITY 

Work obtained from human crowds can be unreliable.  

People can misunderstand instructions and make mistakes, 

and some people provide maliciously wrong.  Removing 

this noise from a crowd computing system is generally done 

in one of four ways: 

(a) redundancy, where multiple people are asked to do 

the same task, and their answers are aggregated 

automatically, using averaging, majority vote, or 

machine learning (Sheng, Provost, & Ipeirotis 

2008); 

(b) rating, where one person does the work and a 

different group of people is asked to rate or vote 

on the quality of the answer; 

(c) gold-standard tasks, where the system includes 

tasks with already-known answers among the work 

a person is asked to do, and uses the person’s 

performance on those tasks to decide whether to 

accept or reject their other work (Oleson et al. 

2011); 

(d) behavioral measures, where the system observes 

secondary metrics about how the work was done, 

such as how much time was spent working or the 

amount of scrolling in the web browser, to 

distinguish helpful workers from unhelpful ones 

(Rzeszotarski & Kittur 2011). 

Our own work has studied ways to incorporate quality-

control measures like these into a workflow for a complex 

cognitive task.   For example, the Improve-and-Vote 

workflow (Little et al. 2010) is an iterative process in which 

one person tries to improve an artifact and another group of 

people votes on whether the change actually was an 

improvement.  Figure 1 shows how Improve-and-Vote can 

be used to transcribe a messy handwriting sample 

collaboratively.  We have also applied the idea to 

brainstorming and image captioning (Little et al. 2010).  

Although Improve-and-Vote can be very effective for 

producing a quality result, it can be slow and costly to run. 

A decision-theoretic control approach has been proposed to 

optimize it (Dai, Mausam & Weld 2010), which maintains 

belief estimates of artifact quality and worker ability and 

uses those estimates to automatically decide when the 

system should ask for a vote, ask for an improvement, or 

stop the process.  One cost-saving rule of thumb from these 

decision-control experiments is that the first few iterations 

can usually be run with no voting at all, since successful 

improvement is very likely in those iterations. 

 

We have also developed a workflow for document editing, 

called Find-Fix-Verify (Bernstein et al. 2010).  The 

workflow is illustrated in Figure 2.  In the Find step, 

redundant workers identify problems in the text, and only 

problems identified by at least two workers are kept.  In the 

Fix step, other workers propose edits to fix the problems, 

and the Verify step uses rating to keep only the best edits. 

We incorporated this workflow into a Microsoft Word 

plugin, called Soylent, to implement two features, 

proofreading and text-shortening.  Soylent demonstrates 

that crowd work can be integrated as a component of an 

interactive system, and used in a way that feels like a 

feature of the user interface. 

 

Figure 1: Improve-and-Vote workflow applied to handwriting 

transcription. 

 

Figure 2: Find-Fix-Verify workflow used to trim unnecessary 

text from a document. 



 

 

IMPROVING LATENCY 

Our recent work has focused on realtime crowdsourcing, in 

which the crowd’s help is needed within seconds in order to 

support an interactive application.  Examples of interactive 

applications we have built that depend on realtime crowds 

include VizWiz (Bigham et al. 2010), a smartphone app 

that allows a blind user to take a picture, ask a question 

about it, and get answers from a crowd in less than a minute 

(Figure 3); and Adrenaline (Bernstein et al. 2011), a camera 

app with a “crowd-controlled shutter”, which captures a 

short video and sends it to a crowd to choose the best frame 

to keep, getting the answer back in seconds. 

Over the past year, our work in realtime crowdsourcing has 

produced several findings.  First, we have developed a new 

technique, the retainer model, that has crowd members 

ready to help on demand by recruiting them in advance and 

paying them a retainer to wait for a short time.  Our 

experiments with the retainer model on Mechanical Turk 

found that when workers were put on retainer and then 

recalled in five minutes, 50% responded within two 

seconds, and 75% within three seconds, making this 

approach feasible for an interactive application (Figure 5). 

Using these empirical results, we developed a theoretical 

model of retainer pools that would allow a system designer 

to predict the size of the pool required to obtain a desired 

low response time and low probability of failing to have 

enough workers ready.  This model also enabled us to 

devise and test a new technique, precruitment, which recalls 

the workers a few seconds before the request even arrives, 

in order to mask the 2-second latency of recall (Bernstein et 

al. 2012). 

A second finding is an improvement in quality control for 

realtime crowdsourcing.  Normally, quality control (e.g. 

voting or looking for agreement between crowd members) 

adds extra latency to the crowd’s work, which slows down 

the response.  To counter this, we developed the rapid 

refinement algorithm, which guides a crowd to agree on a 

point in a continuous parameter space (e.g. the best time 

point in a video) and to do so very quickly.  In the 

Adrenaline camera app, we found that rapid refinement 

took 3-5 workers a median time of 11 seconds to agree on 

the best frame of a video, which was several seconds faster 

than just taking the first answer (no quality control at all), 

and more than three times faster than voting.  We are 

currently exploring how to apply the ideas of rapid 

refinement to other domains, such as question answering, 

web searching, and audio selection. 

CROWDS WITH OTHER INCENTIVES 

A final consideration in crowd computing system design is 

the set of incentives that power the system.  In the previous 

systems – Soylent, VizWiz, Adrenaline – the crowd is 

drawn from Mechanical Turk and motivated by pay.  In 

reality, however, crowd computing is liable to be deployed 

on a crowd driven by a variety of incentives, including 

altruism, social reciprocity, and entertainment. 

Some of these issues have come up in a crowd-computing 

system we have developed for classroom use at MIT.  

Caesar is a code reviewing system that allows a mixed 

crowd of students, alumni, and teaching staff to collaborate 

on reviewing student programming assignments. Each of 

these groups has different incentives.  Students are 

motivated extrinsically by grades and intrinsically by a 

desire to learn.  Teaching staff are motivated extrinsically 

by pay and intrinsically by a desire to impart knowledge.  

Alumni are motivated intrinsically by altruism, and 

extrinsically (in our experience) by a desire to meet 

students and recruit them for summer internships and full-

time jobs.  When these varying incentives come together in 

a system, it increases the complexity of the design problem. 

The Caesar system has been deployed in several semesters 

of an MIT software engineering course, 6.005 Software 

Construction. So far, Caesar has been used to review 13 

problem sets, comprising roughly 2500 student submissions 

by roughly 390 undergraduate students.  Counting those 

students, plus alums and teaching staff, over 500 people 

have done reviewing, and together they have made more 

than 21,000 comments on student work. 

With the new system, students received written comments 

about their programs within 3 days after submitting them, 

considerably faster than the several weeks it often takes for 

 

Figure 3: The VizWiz system allows a blind person with a 

smartphone to take a photo and speak a question about it, and 

get the question answered by members of a crowd.  

 

Figure 4: The retainer model recruits crowd workers before 

they are needed.  Experiments on Mechanical Turk show that 

with a short retainer interval of 5 minutes, roughly half the 

retained workers are ready to work within 2 seconds after 

being called on. 



 

graders.  This fast turnaround time enabled us to institute a 

“returnin” policy that allows students to revise and resubmit 

their programs in response to the comments, in order to 

improve their grade.  The average program was reviewed 

by 10 different reviewers and received 9.6 comments. 

An analysis of a sample of comments showed evidence that 

the crowd interaction promoted learning, particularly from 

weaker students reviewing stronger students’ solutions.  For 

example: “Student: This is interesting. Why do you store all 

the messages you send/receive in a log? Code author: For 

debugging. The log adds time stamps, which help a lot for 

debugging concurrency problems.” 

We found that most comments in the sample were useful 

critiques (bugs, clarity, performance, simplicity, or style); 

some were evidence of learning on the part of the reviewer 

(as mentioned above) or positive reinforcement of 

something specific that was good about the code.  A 

fraction of comments (roughly 15%) were some form of 

“looks good to me,” which may have been true, but meant 

that neither the reviewer nor the code author learned 

anything from that interaction. Turning this around, 

however, the remaining 85% of the comments in the system 

did indicate some degree of learning opportunity had been 

created by Caesar that didn’t exist before, which we take as 

highly positive, with room for improvement. 

One lesson learned is the importance of choosing the right 

code to review.  Programming assignments typically have a 

lot of uninteresting code – staff-provided code, test cases, 

tiny exception classes – and an automatic code reviewing 

system must be smart about what is worth assigning to code 

reviewers.  Caesar had a few early bugs in its reviewing 

assignment algorithm that led to boring reviewing for the 

reviewers and unhelpful feedback for the code authors.  If 

the crowd had consisted of paid workers, this may have 

been less of a problem, but for a crowd with varying 

incentives, the value of the work can suffer when those 

incentives are not met. 

THE CROWD COMPUTING DESIGN SPACE 

Software system designers already have a variety of tools in 

their design toolbox, including programming languages, 

platforms, frameworks, libraries, and design patterns.  

These software tools, in combination with human end-users 

operating and interacting with the resulting system, have 

had enormous impact over the last 50 years of the 

computing era, affecting virtually every sphere of human 

activity (NRC 1995, NRC 2012).  Crowd computing 

introduces a new kind of component to this toolbox: a 

crowd of people making small contributions at the system’s 

behest, and coordinated by automatic algorithms.  The 

human intelligence embodied in a crowd has the potential 

to change how we build and deploy software systems in 

significant ways. 

One such change is the notion of deployable Wizard-of-Oz 

prototyping.  Wizard-of-Oz prototyping is a tried-and-true 

technique for experimenting with ideas in artificial 

intelligence or human-computer interaction that are 

currently hard or impossible to build.  Essentially, a human 

simulates the system, doing manually what software will 

eventually do automatically, acting like the “man behind 

the curtain” (hence the term Wizard of Oz).  Wizard-of-Oz 

prototyping was used in early experiments with speech 

recognition (Gould, Conti & Hovanyecz 1982), and has 

been widely used in user interface design with techniques 

like paper prototyping (Snyder 2003).  In the past, Wizard-

of-Oz prototyping was limited to laboratory use, since the 

wizard had to be present in order to simulate.  With crowd 

computing, however, the crowd can take the role of the 

wizard, using their human intelligence for problems that we 

don’t know how to solve with software yet.  Since the 

crowd is networked and highly available, a Wizard-of-Oz 

system that uses a crowd can escape the laboratory, and be 

deployed for real-world use by real users. The VizWiz 

system is one example. Thousands of blind users have 

installed it on their phones, and over 40,000 questions have 

been asked, shedding important light on the kinds of 

information needs that blind people have and how they ask 

their questions (Brady et al. 2013).  Recent web startups 

have also used this technique of bootstrapping a system 

with crowd work (Yoskovitz 2011).  Using a crowd-driven 

Wizard of Oz prototype has two benefits.  First, it allows 

the system to be deployed much sooner, in order to learn 

whether users actually need it, and help it evolve faster to 

meet user needs.  Second, it allows the system to start 

building a corpus of data – such as photos and questions 

asked by blind users, along with answers given by crowd 

workers – which are essential for training machine learning 

algorithms.  After enough data has been collected, artificial 

intelligence can be introduced into the system to handle 

tasks that computers can do.  This shifts work away from 

the crowd, reducing the cost of crowd labor, while still 

keeping the crowd available for the hard tasks that we don’t 

know how to do with AI. 

In our experience of developing crowd-powered systems, 

we have made many mistakes and learned a few lessons.  A 

design handbook for crowd computing has yet to be written, 

but a few principles are known.  First, it helps to divide 

work into chunks that are as small as possible (for 

parallelism and fault-tolerance), but not so small that the 

worker loses necessary context.  Second, a system designer 

should expect noise (poor quality work), even from the 

highest-quality crowd, and design for it, for example using 

workflows like Find-Fix-Verify that incorporate quality 

control mechanisms.  Third, a designer must keep in mind 

that crowds are powered by a variety of incentives, and 

make sure that the system aligns with and supports those 

incentives, or the crowd may drain away. 

Finally, when deciding whether a particular system would 

benefit from the crowd component in the toolbox, it’s 

important to think about what the crowd brings to the 

system.  Most systems already have human users 



 

interacting with them or operating them, so human 

intelligence is already part of the system, broadly 

construed.  So what benefit does the crowd bring? One 

benefit is diversity: the crowd has diverse skills, 

perceptions, and opinions, and even the different user 

interface presented to the crowd (typically small bits of 

work) may enable them to see things and do things that the 

primary end-users of the system do not.  Another benefit is 

different competence: the crowd may have abilities that the 

end-users of the system do not.  The VizWiz system 

demonstrates this property most strongly, since the crowd 

has vision, but the blind end-users do not.  Other kinds of 

different competence may include language skill, technical 

expertise, or even physical location in the world.  If 

diversity or different competence are important to the 

human intelligence needs of your system, then a crowd may 

be the right tool for the job. 

CONCLUSION 

Crowd computing draws on the power of people on the 

Web to do tasks that are hard for individual users or 

computers to do alone.  This paper has presented several 

examples of crowd computing systems that we have built, 

in domains ranging from handwriting transcription, to 

document editing, to assitive technology for the blind, to 

classroom code reviewing.  We have used these example 

systems to illustrate some of the challenges of crowd 

computing, including quality control, latency, and incentive 

management.  One of the exciting aspects of crowd 

computing as a field is its potential for injecting human 

intelligence into a variety of software systems, and using it 

as a springboard to artificial intelligence. 
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