

Research on high efficiency and low cost thin film silicon solar cells

Nankai University

2013 China-America Frontiers of Engineering, May 15-17, Beijing, China

Institute of photo-electronics thin film

devices and technique

1954: The Birth of Solar Photovoltaics

A New Silicon *p-n* Junction Photocell for Converting Solar Radiation into Electrical Power

D. M. CHAPIN, C. S. FULLER, AND G. L. PEARSON Bell Telephone Laboratories, Inc., Murray Hill, New Jersey (Received January 11, 1954)

1. Crystalline silicon solar cells

 Mono-crystalline and poly-crystalline solar cells

2. Thin film solar cells

- Silicon-based thin film solar cells
- Copper Indium Gallium Selenium solar cells (CIGS)
- CdTe solar cells
- Dye sensitized solar cell (DSC)

3. Concentrated solar cells

2011 Total Production : 37 GW

Source: Photon Int.

Thin film silicon solar cells

Advantages:

- No materials limited
- Low deposited temperature (<200°C)
- Deposited on different substrates

Disadvantages:

- Low conversion efficiency
- Light induced degradation efficiency

Thin film Silicon solar cell structures: substrate configuration

 Initial 16.3% efficiency has been achieved using **a-Si:H**/a-SiGe:H/ μ**c-Si:H** structure .
-----nip

Baojie Yan et al. Appl. Phys. Lett. 2011.

Thin film Silicon solar cell structures: superstrate configuration

 Stable 13.44% efficiency has been achieved using a-Si:H/ μc-Si:H / μc-Si:H structure .- ⁻

Soohyun Kim et al. 27th EU-PVSEC **2012**.

Institute of photo-electronics thin film devices and technique

Thin film silicon PV technology

- Target: Low cost and high conversion efficiency
- 1. Key issue: increase efficiency
- Multi-junction for full use of solar spectrum
- New materials
- Advanced light trapping
- New structures
- New concepts

2. Key issue: reduce cost

- High deposition rate
- High stable efficiency
- Single chamber deposition
- Suitable large area
- 3. Summary and outlook

devices and technique

1. Key issue: increase efficiency

New materials: Amorphous and microcrystalline silicon alloys

Deposition technique:

■ PECVD, VHF-PECVD

Applications:

Doped layers

.

- Intermediate reflectors
- Index matching layers

For example: µc-SiOx

Light trapping: Trap light inside the absorber layer

Approaches:

- Effective light in-coupling at the front side
- ✓ Nano-structured ARC
- Scattering at rough interfaces
- ✓ Broad band light scattering
- Reflection at the back side
- ✓ Random structure
- ✓ Periodic structure

Institute of photo-electronics thin film

devices and technique

ZnO NW :

devices and technique

ZnO NW : amorphous silicon

Scattering at rough interfaces

 \checkmark To scatter the incident light for effective light trapping

 \checkmark To increase the short circuit current density (Jsc) in the solar cells.

- Scattering at rough interfaces
- ✓ Broad band light scattering: double 'period' structure--Sputtering+ MOCVD

devices and technique

Institute of photo-electronics thin film

devices and technique

a-Si/µc-Si tandem solar cells

- Incorporation of n type SiO_x—Two-phase structure
- Front transparent conductive oxide

CWBR: conductive white

devices and technique

- Reflection at the back side
- ✓ Random structure
- ✓ Periodic structure

Lisha Bai et al. to be submitted

- Reflection at the back side
- ✓ Random structure
- ✓ Periodic structure : Polystyrene spheres (PS)

Xuejiao Liang et al. to be submitted

2. Key issue: reduce cost

- High deposition rate
- High stable efficiency
- Single chamber deposition
- Suitable large area
-

A: High deposition rate

- High pressure and high power (3Torr and
- 70W(powered electrode area: >100cm²)

Home made

Lisha Bai et al. PVSEC-22 . 2012

VHF-PECVD system

devices and technique

Microcrystalline silicon solar cell

Deposition rate: 1.5nm/s; Conversion efficiency: 9.87%

南开大学 Nankai University Home made

B: Single chamber

♦ P, I, N deposited in a chamber

Heater

↓ ↓ ↓ ↓ lightglassTCOpI (μc-Si: H)nZnOAg/Al

Advantages

- High electrode utilizatior
- High gas utilization
- Easy operation and less servicing.

<u>Disadvantages</u>

- Contamination-doping gas
- Serious for microcrystalline silicon

devices and technique

B: Single chamber

Phosphorus contamination:

- n/p interface
- Improved short and long wavelength response
- The µc-Si: H covering layer is the best method to reduce
 phosphorus contamination.

14

12

10

8

0

-2

-4

Current (mA)

Institute of photo-electronics thin film

devices and technique

Large area:

In 2011, developed a VHF-PECVD system with the capacity of 2MW/year .

- 8 chambers in this system;
- ◆ 40.68 MHz;
- substrate area is 2 feet by 4 feet;
- Each chamber simultaneously deposited two pieces.

33

Uniformity distribution of electric field

34

devices and technique

Un-uniformity for thickness:

Less than 3.85% was achieved at edge exclusion 2cm

devices and technique

36

Un-uniformity for Xc:

Less than 4.8% was achieved at edge exclusion 2cm

37

Un-uniformity for electrical properties:

Dark conductivity: 10⁻⁸S/cm; Photosensitivity: ~1000

Institute of photo-electronics thin film

devices and technique

In to Vac 100 x 40 Jbox west, Property of NREL, Top cell,

Institute of photo-electronics thin film devices and technique

Summary

Improving efficiency

- New Materials
- Light management
- ✓ ZnO NW ARC
- ✓ Innovative front electrode
- ✓ Back reflector

Low Cost technique

- High initial conversion efficiency 12.39% for a micromorph tandem cell;
- Single chamber-deposited tandem solar cells with an efficiency of 10.59%;
- Triple-junction module has achieved at 9.59% (NREL, 0.79m2) and increased by 20% compared to commercial module.

Future research directions----thin film silicon

Light management: (Suitable for other solar cells)

- External ARC and low absorption TCOs
- 2-D or 3-D photonic crystals (PC) based flat substrates

New materials :

• Silicon based alloys with O, C, and Ge

Performance (η >20%):

• Increase Voc (growth on flat substrates)

devices and technique

Acknowledgements !

devices and technique

Thank you for your attention !

devices and technique

devices and technique