

2013 China-America Frontiers of Engineering

Software defined networking

Does SDN qualify as a "frontier" of engineering?

What is software defined networking (SDN)? NETWORKWORLD

August 2012

Searching for an SDN Definition: What Is Software-Defined Networking? Computing May 2012

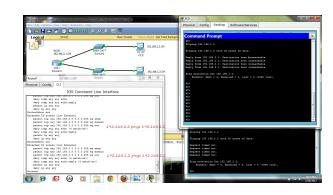
Understanding Software Defined Networking

"If you aren't intimately familiar with Software Defined Networking, don't fret. Only 10% of 450 IT practitioners at a recent Network World event raised their hands when asked if they understand SDN .."

May 2013

Agenda

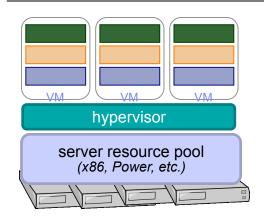
- Understanding the shift to software in networking
- Why do engineers and operators care about SDN?
- SDN technology progression: OpenFlow, network virtualization, and controller platforms
- SDN in practice
 - SDN and cloud computing
 - SDN deployments in some of the largest networks
 - SDN Research focus areas
- Summary and references


Collaboration with Mohammad Banikazemi, Jack Kouloheris, David Olshefski, John Tracey, Guohui Wang, IBM TJ Watson Research Center

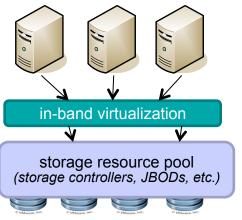
Realities of traditional networking

- network functions embedded in hardware appliances
 - high-speed packet switching, protocols, and services all residing on devices
- proprietary from various vendors
- device-centric configuration and management
- proprietary CLIs and APIs
- limited automation with custom scripts

- provisioning of network services manual, slow, and prone to errors
- limited agility

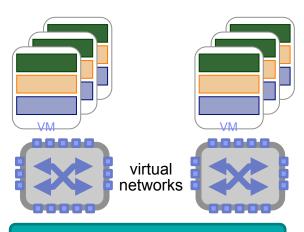

Accelerating shift to software in networking

software providers moving the control point toward software functions and virtual switching



Networks are the new virtualization focus

server virtualization

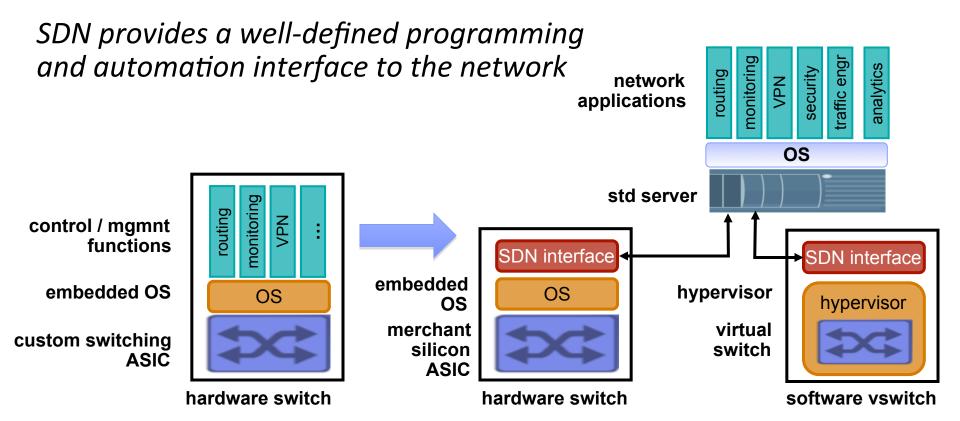

- efficiency (consolidation)
- multi-tenancy (isolation)
- flexibility (scaling, migration)
- hw independence (emulation)

storage virtualization

- efficiency (thin provisioning)
- multi-tenancy (isolation)
- flexibility (scaling, mapping)

network virtualization now emerging

network hypervisor



network virtualization

- efficiency (multiplexing)
- multi-tenancy (isolation)
- flexibility (loc independence)
- hw independence (encap)

Software-defined networking: the new paradigm

Traditional, vertically integrated model

- distributed control with forwarding
- localized decision making
- embedded, fixed function

SDN, horizontal model

- decouple control and management from forwarding
- end-to-end decision making
- programmable function

Software-defined networking – the promise

- rapid introduction of new functions at "software speed"
- better integration of the network with IT processes in the enterprise
- a new paradigm for applications to interact with the network
 - tell the network what you want
 - ask the network what you need to know
- a clean decoupling of the service API from the underlying implementation
- simplified, less expensive devices drives commoditization
- provides a platform for network automation that can reduce operational cost

traffic cloud access perf engineering control optimizer networking **NETWORK APIS NETWORK ORCHESTRATION LAYER** virtual topology device event network configuration discovery collection creation

SDN architecture

Progression for software-defined networking

SDN enablers

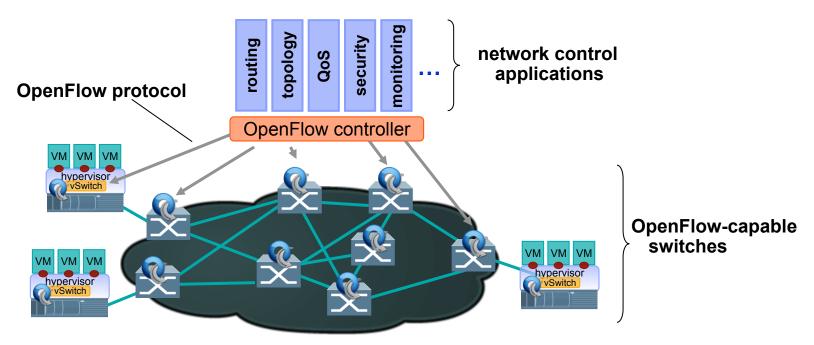
SDN applications

OpenFlow and centralized control

multi-tenant network virtualization high value services and network integration

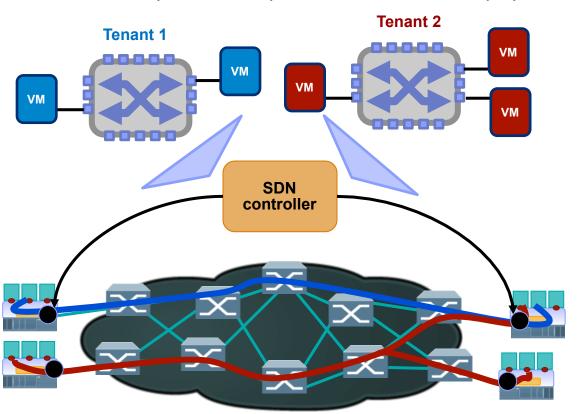
- industry standard protocol for SDN
- real deployments in campuses, large online SPs, and enterprises
- quickly becoming a standard feature on switches

- first production application for SDN
- multiple technical approaches
- vendor offerings already available or announced
- ultimately, a standard feature


- greater variety of network-level and application-level services
- integration with IT processes (security, provisioning, disaster recover, etc.)
- "app store" for SDN

OpenFlow: a standard protocol for SDN

OpenFlow provides an industry-standard API and protocol to program packet handling in switches

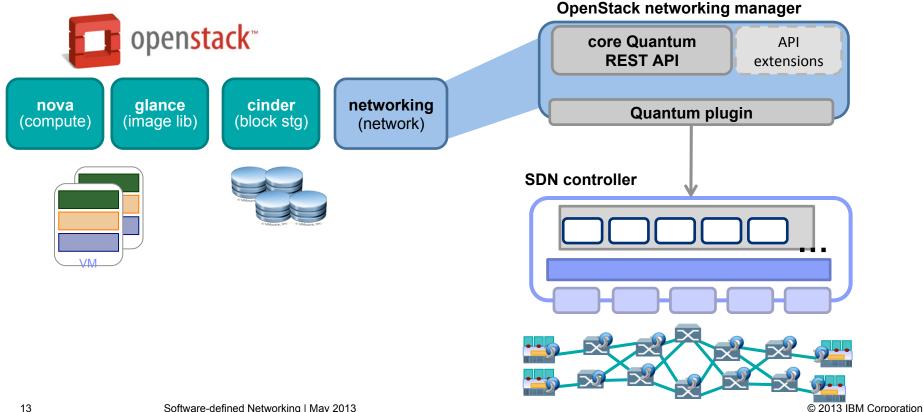


- OpenFlow controller applications install match-action rules in switches
 - -if < src IP = x and dest IP = y> then forward to port 2
 - $-if < VLAN \neq 200 > then drop packet$
- Fine-grained and flexible control over packet handling

Multi-tenant network virtualization with overlays


- one-time deployment and configuration of the physical network
- provide each data center tenant with a single virtual network abstraction
- SDN controller manages software switches on end hosts
- uses overlays and encapsulation to virtualize physical network infrastructure

- virtual network implemented purely on end hosts by software switches and encapsulation
- create and destroy virtual networks on demand
- overcomes scaling limits of physical network virtualization


A comprehensive software-defined networking platform

SDN and cloud computing: OpenStack example

- Cloud computing provides virtual servers and storage on demand in a usagebased consumption model on shared infrastructure
- Cloud networking must fit into the same model on-demand, programmable, multi-tenant

Examples of production SDN deployments

- Management of inter-data center WAN traffic with OpenFlow
 - lack of control and non-determinism in distributed protocols
 - non-standard vendor configuration APIs
 - centralized, system-wide control: faster convergence and higher efficiency

- SDN-based network virtualization for public clouds
 - on-demand, rapid creation of customer networks at scale
 - enable per-customer private addressing and policies
 - enabled using overlay network virtualization (NVGRE)
 - virtual switches implement all policies in software

Active research topics in SDN

- Language support for programming the network
- Verifying, monitoring, and debugging SDNs
- Extending SDN from routing and switching to the network service plane (L4 L7)
- SDN controller design, scale-out, and state replication
- Network abstractions and application API design

References – where to learn more about SDN and OpenFlow

- Open Networking Foundation (OpenFlow specification standardization)
 - https://www.opennetworking.org
- Open Networking Summit (Industry conference on SDN and OpenFlow)
 - http://opennetsummit.org
 - videos and charts available for 2011 2013 conferences
- ACM SIGCOMM Hot-SDN workshop
 - 2012 papers and videos available, 2013 program posted
- SDN and OpenFlow publicly available tools and technologies
 - http://www.opendaylight.org (Open Daylight Project)
 - http://onlab.us (Stanford / Berkeley)
 - http://www.projectfloodlight.org (BigSwitch)

— ...

Summary

- Software-defined networking aims to fundamentally change the way networks are deployed and operated
 - moving intelligence from hardware to software (new players)
 - programmability and integration in every device (devops)
- Rapid pace of industry adoption and interest with real deployments starting in cloud service providers and campuses
- "Openness" is a key characteristic of SDN
 - open standards, e.g., OpenFlow
 - open source platforms, e.g., OpenDaylight
 - open APIs
- Robust industry / research partnership in evolving SDN