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 Outline: 
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• Biofuels and policy context for decarbonizing 
transportation 
– Global consequences of biofuels:  land use change (LUC) 

• Life Cycle Assessment (LCA) of lignocellulosic biofuel 
conversion technologies 
– Model development for bio-ethanol (E100) fuels; uncertainty 
– Focus: GHG environmental impacts 

• Better biomass and biofuels and analytics:  
– Feedstock:  perennial grasses, ag. residues, winter crops,  
– Fuel conversion: pyrolysis bio-oil, higher alcohols  upgrade to 

infrastructure compatible fuels and value-added co-products 
– Temporally and spatially explicit accounting procedures 
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• A 2004 paper outlined a strategy for reducing 
GHG emissions from different economic sectors 
by 1 gigaton each, a “wedge analysis”   
Pacala and Socolow, Science, 2004. 305: 968-972 

• Biofuels are one avenue for achieving this 
“wedge” in the transportation sector 

• Gigaton-scale bioenergy production will demand 
• Large land and water inputs 
• Will transform rural communities (social-economic-

environmental implications) 
• Agricultural landscape 

 

 Introduction and Background 
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Spatari, Tomkins, Kammen, 2009 



Policy Context: 
• Since 2004, low carbon and renewable fuel policies in 

development around the world  
• LCFS (California, North-east states, Canada), RFS (US), Europe (EC) 
• Reduce GHGs relative to baseline gasoline ~93 gCO2e/MJ 

• Biofuels compatible, attractive strategy for reducing 
transportation’s carbon intensity 
• Feedstocks today: corn (ethanol), soybean (diesel) 

• Mingles energy with food markets 

• Recent research on adverse “land-based” impacts of biofuels: 
– Direct and indirect CO2 from land use change (LUC) 
– Other sustainability risks:  water, biodiversity, food security 

• Need a robust life cycle assessment tool to estimate complete 
fuel cycle GHG emissions + consequences 

? 
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Carbon debt from direct LUC 
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Carbon debt  

Annual repayment  

Payback time 

Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. 2008, Science.  
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Indirect land use change (LUC) 
may cause large GHG emissions 

U.S. corn/soybean farmers 
sell land to developers, 
land is now developed 

Additional land 
in Brazil (for 

instance) is put 
into soy 

production 

U.S. soybean 
exports go 
down and 

world soybean 
prices rise 

Direct process emissions: 
Change in CO2 flux on land       

 

Indirect LUC 

 emissions 

Soy farmers everywhere 
use more inputs to 

increase yields 

Indirect process 

 emissions 

Potentially large  
global land carbon  
debt! 

From M. O’Hare, UC Berkeley; Searchinger et al., 2008, 10.1126/science.1151861  

Unobservable variables! 
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Sustainability issues: 

1Direct + Indirect 
Scale: Regional, national, global 

Sustainability criteria1 
Ecological Socio-economic 
Water use 
Water pollution 
Organic pollutants 
Agro-chemicals 
Biodiversity 
Soil erosion 
Fertilizer use 
GMOs 
GHGs/energy input 
Harvesting practices 

Food and energy security 
Land tenure 
Net Employment 
Income distribution 
Wages 
Working conditions 
Child labor 
Social responsibility 
Competitiveness 
Culture - Traditional way of life 

Spatari, O’Hare et al. 2008 



Vehicle 
Operation 

Ethanol 
Conversion 

Feedstock 
Production 

- Fertilizer 
- Herbicides 
- Harvesting operations 
-CO2/N2O flux 

Feedstocks: 
- corn 

- Chemicals, Enzymes,  
-Nutrients 
-Co-products: CO2, protein  
meal, hulls (energy recovery) 
-Denaturant (2% gasoline) 

- Blending with gasoline  
- Vehicle operation 

Technologies: 
-Dry grind process 
-Sugar generation 
-Fermentation 
-co-product crediting 

Vehicle: 
-Ethanol-fueled vehicle (E92) 
 

-Compare with baseline  
-gasoline  vehicle  
 (96 g CO2e/MJ) 

Fuel cycle Vehicle use 

LCFS/RFS: Fuel Cycle Model 
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+ Indirect  
  consequences 



Time Effects 
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Ethanol:  Energy and Environment 
• Energy security: compared to gasoline, corn ethanol: 

– Significantly reduces petroleum use (~95%), moderately lowers (13%) fossil 
energy use (Farrell et al. 2006);  

• Many increased risks related to land use change (LUC) 
 

 
 

? 
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Time Effects Uncertainty 

Plevin et al 2010 O’Hare et al 2009 Mullins et al 2010 

iLUC 



Direct LUC-GHG Emissions – biofuels 
versus conventional & unconventional oil 
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Yeh et al. 2010, Environ. Sci. Tech. 44: 8766-8772 

Peatland conversion 



The Nonsense of Biofuels! 
Michel, H., 2012* 
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Low overall conversion of sunlight to terrestrial biomass <1%  

Geyer et al. 2013 

Higher land use  
efficiency with     
PV technology 

* Angew. Chem. Int. Ed. 51, 2516 – 2518 



Comparing sun-to-wheels pathways 
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Geyer et al. 2013 

PV-powered BEV low: 
Land 
GHG 
Fossil energy 
 
 
 
 
 
 
 
 
Higher fraction of vehicle 
material intensity 

Basis:  17.8E12 MJ NCV to gasoline 

Fuel + vehicle cycle 



• Need for robust life cycle assessment tools to 
estimate the complete fuel cycle GHG emissions 
+ consequences with accounting of uncertainty 
– Biomass feedstocks that do not compete for arable 

land 

• Minimize iLUC  effects by selecting lignocellulosic 
feedstocks that do not compete for arable land 
and use “sustainable” fractions: 
• Ag. Residue, MSW, forest/mill waste, novel 

technologies (e.g., algae) 

 

Better Biomass & Biofuels 
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Vehicle 
Operation 

Ethanol 
Conversion 

Feedstock 
Production 

Biomass to Ethanol: Life Cycle Model 

- Fertilizer 
- Herbicides 
- Harvesting operations 

Feedstocks: 
- Corn stover (CS) 
- Switchgrass (SG) 
- Douglas fir (Df) 

- Blending with gasoline 
- Vehicle operation 

- Pretreatment chemicals 
- Enzymes 
- Nutrients 

Technologies: 
- Dilute acid (NREL) 
- Ammonia fibre explosion  
  (AFEX) 
- Steam explosion (SE) 
- Organosolv (OS) 
-Enzymatic Hydrolysis 
-Fermentation 

Vehicles: 
- Ethanol-fueled vehicle (E85) 
- Reformulate gasoline- 
  fueled vehicle (RFG) 
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Ethanol Conversion Model: Near-term 

Pre- 
treatment 
 

Hydrolysis &  
Fermentation 

Ethanol  
Recovery 
 

Lignin Separation  
& Wastewater  
Treatment 
 

 
 
Finished 
Products 
 
 

 
 
Energy  
Recovery 
 
 

Enzyme  
Production 

Ethanol 

Electricity 

Steam & 
Electricity Lignin & biogas 

Syrup & solids 

Feedstock: 
 
Cellulose 
Hemicellulose 
Lignin 

Cellulose* 
Xylose 
Arabinose 
Mannose 
Galactose 

Ethanol 
Water Lignin 

* Pre-treated cellulose 

Simultaneous  
saccharification & 
co-fermentation 

(SSCF) Enzymes 
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State of Technology:  Chemicals and Enzymes 
• Chemical/enzyme inputs: 30-35% WTG GHG emissions 

– Alternative pretreatment: steam explosion, oganosolv, autohydrolysis 

• Cellulase cocktails (endoglucanases, exoglucanases,  
β-glucosidases) still specialty products, only a few decades 
old, high production costs 

• Use of xylanases to improve sugar recovery 

• Challenges in enzyme development: 
– Improving specific activity (70 versus 450-600 FPU/g) 

– On-site (in-situ) production can reduce GHG emissions;  

– Reducing global warming intensity (GWI) - C-source 

• Trade-off between chemical and enzyme dose 17 
MacLean, H. L.; Spatari, S., (2009) 



Enzymes, Cellulose recalcitrance 
• Specific technological challenges  
• Key challenges for R&D: 

– Overcoming the “recalcitrance” of the cellulosic 
feedstock (Stephanopolous, 2007) 

– Improving enzyme performance 
• Improving enzyme specific activity (FPU/g cellulase) 

– Reducing enzyme costs 
– Reducing pretreatment chemical costs  

(Himmel et al, 2007) 

• Result in improved yields, better cost performance 
 Stephanopolous, 2007, Science. 315:801-804; Himmel et al., 2008, Science. 315:804-807 
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Research Methods – Uncertainty diagnostics 
1. Process/pathway selection (technologies, feedstocks) 
2. Temporal and spatial boundary definition 
3. LCA model construction and data collection  

• Performance metrics identified 

4. Hypothesis development  
5. Sensitivity analysis:  LCA model variables  

• Factorial design 

6. Uncertainty analysis on LCA models 
• Applying Monte Carlo simulation 
• Testing resource/environmental performance hypotheses 

7. Analysis of model results 
• Expert elicitation – assess the state of technology 

19 



Model Equations and Variables: Life Cycle  

Ethanol (Yi) = f(x1, x2, x3;y1,y2…) 
 

Electricity (Eb) = g(x1, x2, x3; y1 …) 

Fossil energy (MJ/L and /km) 

Petroleum (MJ/L and/km) 

GHG emissions (g CO2 eq./L and /km) 

x1 x2 x3… 

9 ethanol conversion variables: 
Feedstock           (2) 
Pre-treatment           (1) 
Hydrolysis           (1) 
Fermentation           (5) 
 
4 feedstock production variables: 
CO2 sequestration, N-fertilizer use; 
N2O emission, Farm energy 
 

Sample model 
results 
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Performance:  Ethanol Yield 
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Uncertainty in LC GHG emissions  
(with LUC vs. without LUC) 
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Spatari and MacLean (2010), Environ. Sci. Technol. 44: 8773-8780  

         DA = dilute acid pretreatment followed by simultaneous saccharification and cofermentation (SSCF)  
         AFEX =  ammonia fiber explosion pretreatment followed by SSCF 
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Better Biofuels? Lignocellulosic biomass 
• LCA models show reduction in GHG intensity of 

ag. residue and energy crops on marginal lands 
Spatari et al., 2010. Bioresource Technology, doi:10.1016/j.biortech.2009.08.067 

• Lignocellulosic ethanol is still under development! 
– No competitive technologies at commerical-scale 
– Key technological challenge for R&D is enhancing 

individual processes AND overall integration  
– Demonstration scale projects 

• Development of other infrastructure compatible 
fuels show promise but need further research 
• Upgraded pyrolysis bio-oil + biochar 
• Higher alcohols 
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Life Cycle & Techno-Economic Analysis 
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Model development through synergistic tools: 

• Aspen Plus, Simapro, DayCent, Risk-uncertainty analysis: 
– Feedstock production, collection, densification, transport 

– Material/energy balance basis (feedstock conversion);  

– Spatially-explicit feedstock environmental analysis (GHGs) and 
risk/uncertainty 

• Integration with experimental research:  
– Fuel conversion pathway at commercial scale 

• Pretreatment/hydrolysis 

• Free fatty acid synthesis 

• Electrochemical deoxygenation to diesel and bio-lubricants 

 

 

Research in collaboration with Ceramatec  
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Catalytic Pyrolysis Pathway LCA & TEA 
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Life cycle model development: 
• Aspen Plus, Simapro and GIS modeling: 

– Feedstock production, collection, transport 
– Material/energy balance basis (feedstock conversion);  

• Integration with experimental research:  
– Pyrolysis bio-oil blendstock development  

• In-situ catalytic pyrolysis products 
• Ex-situ catalytic pyrolysis products  

– Combustion experiments for  
• Non-catalytic pyrolysis products 
• Catalytic pyrolysis products  

 Research in collaboration with AA Boateng et al.  



Pyrolysis Bio-oil Production 
Bio-oil replaces fuel oil for electricity generation 

Bio-char co-product used as soil nutrient replacement 

Bio-char coproduct used for process energy and land amendment 

Pourhashem et al. 2013 Energy & Fuels 



Pyrolysis Bio-oil-to-Electricity 
 

Pourhashem et al. 2013 Energy & Fuels 



Pyrolysis Bio-oil Production (200 TPD) 
 Economics 

Feedstock handling 
preparation 

$1.91 

Feedstock drying $0.74 
Pyrolysis process $5.78 
Utility $0.99 
Product/Co-product 
storage 

$0.43 

Total Equipment 
Purchase Costs   

$9.85 

Total Installed Costs $24.6 

Capital Costs (million $U.S.) 
Feedstock  $4.28 
Utility $0.77 
Labor, Supplies and 
Overhead 

$2.03 

Depreciation $2.46 
Co-product Credit -$0.18 
Total Production cost $9.36 

Operating Costs (million $U.S.)/yr 

Bio-oil energy: 44.6 MJ/gal 
 
Bio-oil production cost: $12.4/GJ 

Pourhashem et al. 2013 Energy & Fuels 



Electricity markets – RPS commitments 
  Variable Operating Cost (VOC) 

Fuel Cost  + Fixed operating cost + Emission cost 
 Bio-oil electricity: $93/MWh              Bio-char electricity:  $18/MWh 



Summary: LCA of Emerging Technology 
• Systems analysis methods critical to informing 

the development of low-C energy technology 
− Understanding and estimating uncertainties in 

environmental performance  
• Moving towards spatio-temporal analysis within 

LCA research 
− Inclusion of CO2 growth/decay in time 
− Use of spatial statistics to describe location-specific 

GHG profiles for regulated biorefinery products 

• Multiple sustainability metrics for “greening” 
engineered systems 
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