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Outline:
e Biofuels and policy context for decarbonizing

transportation
— Global consequences of biofuels: land use change (LUC)

» Life Cycle Assessment (LCA) of lignocellulosic biofuel
conversion technologies

— Model development for bio-ethanol (E100) fuels; uncertainty
— Focus: GHG environmental impacts

o Better biomass and biofuels and analytics:
— Feedstock: perennial grasses, ag. residues, winter crops,

— Fuel conversion: pyrolysis bio-oil, higher alcohols - upgrade to
infrastructure compatible fuels and value-added co-products

— Temporally and spatially explicit accounting procedures
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Introduction and Background

A 2004 paper outlined a strategy for reducing
GHG emissions from different economic sectors

by 1 gigaton each, a “wedge analysis”
Pacala and Socolow, Science, 2004. 305: 968-972

* Biofuels are one avenue for achieving this
“wedge” In the transportation sector

e Gigaton-scale bioenergy production will demand
e Large land and water inputs

o Will transform rural communities (social-economic-
environmental implications)

e Agricultural landscape

Spatari, Tomkins, Kammen, 2009



Pollcy Context & s :

e Since 2004, low carbon and renewable fuel policies Iin
development around the world
 LCFS (California, North-east states, Canada), RFS (US), Europe (EC)
 Reduce GHGs relative to baseline gasoline ~93 gCO,e/MJ
« Biofuels compatible, attractive strategy for reducing
transportation’s carbon intensity
 Feedstocks today: corn (ethanol), soybean (diesel)
 Mingles energy with food markets

 Recent research on adverse “land-based” impacts of biofuels:
— Direct and indirect CO, from land use change (LUC)
— Other sustainability risks: water, biodiversity, food security



Carbon debt from direct LUC
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U.S. corn/soybean farmers
sell land to developers,

use more inputs to
increase yields

land is now developed
l-_> U.S. soybean

exports go
down and

may cause Iarge Gk

G em|SS|ons

Soy farmers everywhere
h.. world soybean

prices rise

emissions

Potentially large
global land carbon

debt!

From M. O’Hare, UC Berkeley; Searchinger et al.,

Indirect LUC

emissions

Indirect process

Direct process emissions:
Change in CO2 flux on land
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production
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2008, 10.1126/science.1151861



Sustainabillity Issues:

Sustainability criterial

Ecological Socio-economic

Water use Food and energy security
Water pollution Land tenure

Organic pollutants Net Employment
Agro-chemicals Income distribution
Biodiversity Wages

Soll erosion Working conditions
Fertilizer use Child labor

GMOs Social responsibility
GHGs/energy input Competitiveness
Harvesting practices Culture - Traditional way of life

Direct + Indirect
Scale: Regional, national, global
Spatari, O’'Hare et al. 2008




LCFS/RFS: Fuel Cycle Model

Fuel cycle ] Vehicle use —
Feedstock Ethanol Vehicle
Production Conversion Operation
- Fertilizer - Chemicals, Enzymes, - Blending with gasoline
- Herbicides -Nutrients - Vehicle operation

- Harvesting operations
-CO2/N20 flux

Feedstocks:
- corn

+ Indirect
consequences

-Co-products: CO2, protein
meal, hulls (energy recovery)
-Denaturant (2% gasoline)

Technologies:

-Dry grind process
-Sugar generation
-Fermentation
-co-product crediting

Vehicle:
-Ethanol-fueled vehicle (E92)

-Compare with baseline
-gasoline vehicle
(96 g CO2e/MJ)



Time Effects ]
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 Energy security: compared to gasoline, corn ethanol:

— Significantly reduces petroleum use (~95%), moderately lowers (13%) fossil
energy use (Farrell et al. 2006);

e Many increased risks related to land use change (LUC)

iLUC '
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Direct LUC-GHG Emissions — biofuels
versus conventional & unconventional oll

GHG emissions GHG emissions
per disturbed per energy
ENergy source energy yield (PJ/ha) area (t CO,e/ha) output (g CO.e/MJ)
Fossil Fuel
California oil 0.79 (0.48-2.6) 73 (59-117) 0.09 {0.02-0.25)
0.65 (0.33-1.8) 0.13{0.03—-0.35)
Alberta oil 0.33(0.16-0.69) 157 (74-313) / 0.47 {0.12-1.98)
| o / 0.20 {0.092—0.40) 0.78 {0.20—3.39)
D!l sands - fﬁUﬂEEE mining 0.92 {0.61-1.2) 3506 (963—-6201)  3.9(0.83-10.24)
oil sands - in situ 3.3 (2.2-5.1) 20h (23—495) 0.04 {0.0-0.23
Biofuel
palm biodiesel (IndnnesiMMalavsia}f/ 0.0062 702 + 183 / 113+ 30
palm biodiesel (Indonesia’Malaysia) 0.0062 3457 + 1704 R57 + 209
soybean biodiesel (Brazil)® 0.0009 737 + 75 819 + 83
sugar cane (Brazil)® 0.0059 165 + &8 28+10
soybean biodiesel (Brazil)® 0.0009 85 + 47 04 + 47
corn ethanol (US) 0.0038 134 + 33 Ih+9
corn ethanol (US) 0.0038 69 + 24 1816
—> Peatland conversion 11

Yeh et al. 2010, Environ. Sci. Tech. 44: 8766-8772



The Nonsense of Biofuels!
Michel, H., 2012*

Low overall conversion of sunlight to terrestrial biomass <1%

Sun-to-Wheels Transportation Pathways

. Fuel E}
Higher land use Production
. . . Photosynthetic
efficiency with - Biomass
Production
PV technology \ Electricity Battery | m
. > Electric —
Production
Land Vehicle
Geyer etal. 2013 Photovoltaic Battery km
Electricity »  Electric =
Production Vehicle
12

* Angew. Chem. Int. Ed. 51, 2516 — 2518



Comparing sun-to-wheels pathways

Fuel + vehicle cycle
CdTe PV + BEV
Switch El. + BEV Direct land use PV-powered BEV low:
Switch EthOH + ICV I in 10" hectares Land
CornEl +BEV  IE— GHG

Corn EthOH + ICV Fossil energy

CdTe PV + BEV
Swilch ElL. + BEV

e cycle GHG emissions

Switch EthOH + ICV in 10* metric tons of CO,eq m Vehicle
Corn El. +BEV  IE— life cycle
Corn EthOH « ICY I = Fuel life
Gasoline + ICV — cycle

CdTe PV + BEV
SwitchEl. + BEV
Switch EthOH + ICV
Corn El. +BEV

Corn EthOH + ICV

Gasoline + ICV

Life cycle fossil fuel requirements
in 10%* MJ NCV

Higher fraction of vehicle
material intensity

0.

=

0 0.50 1.00 1.50 2.00 2.30
13

Geyer et al. 2013 Basis: 17.8E12 MJ NCV to gasoline
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Better Biomass & Biofuels

* Need for robust life cycle assessment tools to
estimate the complete fuel cycle GHG emissions
+ consequences with accounting of uncertainty

— Biomass feedstocks that do not compete for arable
land

 Minimize ILUC effects by selecting lignocellulosic
feedstocks that do not compete for arable land
and use “sustainable” fractions:

* Ag. Residue, MSW, forest/mill waste, novel
technologies (e.g., algae)

14
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Blomass to Ethanol Llfe Cycle Model

Feedstock Ethanol Vehicle
Production Conversion Operation
- Fertilizer - Pretreatment chemicals - Blending with gasoline
- Herbicides - Enzymes - Vehicle operation
- Harvesting operations: - Nutrients
Technologies:
- Dilute acid (NREL) _
Feedstocks: ... - Ammonia fibre explosion i Vehicles: |
{ _Corn stover (CS) (AFEX) - Ethanol-fueled vehicle (E85)
: - Steam explosion (SE) - Reformula_te gasoline-
| Suehgrass (50) | organosa (09 ueled vehice (RFC)
- Douglas fir (Df) -Enzymatic Hydrolysis

 -Fermentation 15
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Ethanol Conversion Model: Near-term

- =

Simultaneous

* Pre-treated cellulose

Epozéllchetion saccharification &
co-fermentation
Feedstock: Pre- Enzymes (SSCF)
Cellulose treatment > Ethanol
H_em_icellulose Cellulose* Recovery
Lignin Xyl?fe Hydrolysis & Ethanol
Lignin 'l?/lgnrllggze Fermentation Water
Lignin Separation Galactose
& Wastewater
Treatment ) Ethanol
Steam &
Lignin & biogas Electricity ¥
Syrup & solids —*| Energy J| Finished
Recover ..
/ Electricity Products

16
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State of Technology: Chemicals and Enzymes
e Chemical/enzyme inputs: 30-35% WTG GHG emissions

— Alternative pretreatment: steam explosion, oganosolv, autohydrolysis

* Cellulase cocktails (endoglucanases, exoglucanases,
B-glucosidases) still specialty products, only a few decades
old, high production costs

« Use of xylanases to improve sugar recovery

* Challenges in enzyme development:
— Improving specific activity (70 versus 450-600 FPU/qg)
— On-site (in-situ) production can reduce GHG emissions;

— Reducing global warming intensity (GWI) - C-source

* Trade-off between chemical and enzyme dose 17

MacLean, H. L.; Spatari, S., (2009)



Enzymes, Cellulose recalcitrance

» Specific technological challenges

« Key challenges for R&D:

— Overcoming the “recalcitrance” of the cellulosic
feedstock (Stephanopolous, 2007)

— Improving enzyme performance
* Improving enzyme specific activity (FPU/g cellulase)

— Reducing enzyme costs
— Reducing pretreatment chemical costs
(Himmel et al, 2007)

e Result in improved yields, better cost performance

18
Stephanopolous, 2007, Science. 315:801-804; Himmel et al., 2008, Science. 315:804-807



1.

i — ;,—

JS——— S —

?ésearch Methods — Uncertainty diagnostics o

Process/pathway selection (technologies, feedstocks)
Temporal and spatial boundary definition

LCA model construction and data collection
 Performance metrics identified

Hypothesis development

Sensitivity analysis: LCA model variables

 Factorial design

Uncertainty analysis on LCA models

 Applying Monte Carlo simulation

« Testing resource/environmental performance hypotheses
Analysis of model results

o Expert elicitation — assess the state of technology 19
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* Model Equations and Variables: Life Cycle

Feedstock

. - 9O ethanol conversion variables:

(2)

s el Pre-treatment (1)
SHRN X2 | 7 X Hydrolysis (1)
B Fermentation (5)

\

Ethanol (Y;) = (X1, X5, X31¥1,Y5--.)

Electricity (E,) = g(Xq, X5, X35 Yq ---)

4 feedstock production variables:

Sample model
results

J
E=%Y iy
i e £ 5
MYy,
PEioH =L

—> Fossil energy (MJ/L and /km)

—> Petroleum (MJ/L and/km)

— GHG emissions (g CO, eq./L and /km)

CO, sequestration, N-fertilizer use;
N,O emission, Farm energy




Yield (L/dry metric tons)

450

M Aspen model Nth plant (all sugars)

400 | | A Aspen model Nth plant (glucose/xylose)
||

350 -

- A [ro— -
300 - L —

A " 95% CI |-—L— I Interquartile

________________ range
250 - | A |
200 - +
150
NREL CS AFEX CS NREL SG AFEX SG CBP SG

21



Uncertainty in LC GHG emissions
(with LUC vs. without LUC)

200
o Switchgrass
~ 150 Corn Stover
=
©, 100 =
@) .
O 50 Gasoline
= T
2 0 == T T T I%
2 -- g3
a .50 E3 I
% 1
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DA AFEX DA AFEX DA AFEX

DA = dilute acid pretreatment followed by simultaneous saccharification and cofermentation (SSCF)
AFEX = ammonia fiber explosion pretreatment followed by SSCF
22
Spatari and MaclLean (2010), Environ. Sci. Technol. 44: 8773-8780
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Better Biofuels? Lignocellulosic biomass

 LCA models show reduction in GHG intensity of

ag. residue and energy crops on marginal lands
Spatari et al., 2010. Bioresource Technology, doi:10.1016/j.biortech.2009.08.067

 Lignocellulosic ethanol is still under development!
— No competitive technologies at commerical-scale

— Key technological challenge for R&D is enhancing
iIndividual processes AND overall integration

— Demonstration scale projects

 Development of other infrastructure compatible
fuels show promise but need further research

o Upgraded pyrolysis bio-oil + biochar

 Higher alcohols 23
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& Techno-Economic Analysis

Model development through synergistic tools:

* Aspen Plus, Simapro, DayCent, Risk-uncertainty analysis:
— Feedstock production, collection, densification, transport
— Material/energy balance basis (feedstock conversion);

— Spatially-explicit feedstock environmental analysis (GHGSs) and
risk/uncertainty

* Integration with experimental research:

— Fuel conversion pathway at commercial scale

* Pretreatment/hydrolysis

* Free fatty acid synthesis

/Aw

AmN[IEA Electrochemical deoxygenation to diesel and bio-lubricants o

: Research in collaboration with Ceramatec
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lysis Pathway LCA & TEA

Life cycle model development:

I

Catalytic Pyro

* Aspen Plus, Simapro and GIS modeling:
— Feedstock production, collection, transport
— Material/energy balance basis (feedstock conversion);

 Integration with experimental research:

— Pyrolysis bio-oil blendstock development
* In-situ catalytic pyrolysis products
» EXx-situ catalytic pyrolysis products

— Combustion experiments for
* Non-catalytic pyrolysis products

.’?imA » Catalytic pyrolysis products

25
Research in collaboration with AA Boateng et al.



Pyrolysis Bio-oil Production

Bio-oil replaces fuel oil for electricity generation
Bio-char co-product used as soll nutrient replacement

Crop Residue N20 Credit Nitrogen
Fertilizers : Sand
\ Vent
| .
Bio-0il oil

! Vapor o P d

I Quench |—pBio-0il > Elgg?irc?ty L Electricity
A Generation

v
Corn Stover . .
Pretreatment Fast Pyrolysis |Bio-Char Cvclone
i Land F;Z | (drying, grinding) (500°C) Vapor =\ y
3

r
Bio-Char
Fluidizing
Gas
{Heat) I:l Thermal Process ——»  Material Flow

Combustor Combustor |«
Exhaust Q Physical Process —p  Transportation

. . Material flow
Ash Vent v E Bio-Chemica | Process B —— (Credit)

Bio-Char

Bio-char coproduct used for process energy and land amendment

Pourhashem et al. 2013 Energy & Fuels



Pyrolysis Bio-oil-to-Electricity
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Pourhashem et al. 2013 Energy & Fuels



Pyrolysis Bio-oil Production (200 TPD)

Economics
Capital Costs (million $U.S.) Operating Costs (million $U.S.)/yr
Feedstock handling $1.91 Feedstock $4.28
preparation Utility $0.77
Feedstock drying $0.74 Labor, Supplies and $2.03
Pyrolysis process $5.78 Overhead
Utility $0.99 Depreciation $2.46
Product/Co-product $0.43 Co-product Credit -$0.18
storage Total Production cost  $9.36
Total Equipment $9.85 Bio-oil energy: 44.6 MJ/gal
Purchase Costs Bio-oil production cost: $12.4/GJ
Total Installed Costs $24.6 T

Pourhashem et al. 2013 Energy & Fuels



Electricity markets — RPS commitments

Bio-oil electricity: $93/MWh
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Summary: LCA of Emerging Technology
o Systems analysis methods critical to informing
the development of low-C energy technology

— Understanding and estimating uncertainties in
environmental performance

* Moving towards spatio-temporal analysis within
LCA research
— Inclusion of CO, growth/decay Iin time
— Use of spatial statistics to describe location-specific
GHG profiles for regulated biorefinery products
e Multiple sustainability metrics for “greening”
engineered systems

30
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