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The Petroleum Refinery of Today (Source: Wikipedia)
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Petroleum refinery is an integrated
complex system of different unit
operations.

Modern refineries have allowed us
to extract more value from a barrel
of oil.

*Produce a variety of products.

*Processing dirtier feeds
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Lignocellulosic biomass Is cheapest and
most abundant form of biomass

4@ = Vegetable oils —pure oils i.e. soy bean oil (7-14 boe/ha-

yr), and waste olls (yellow grease and brown grease).

Starches — primarily from corn in US (20 boe/ha-yr)
sugarcane in Brazil.

Lignocellulosic biomass — non-edible form of biomass
l.e. grasses, woody biomass (40-70 boe/ha-yr).

Cost on an energy basis decreases: Vegetable Oils >
Starches > Cellulosic biomass.

Ease of conversion decreases: Vegetable olls <
Starches < Cellulosic biomass.
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Some P_redictions in 1968...

A Sierra Club- Ballantine Book 5¢ [ J
g

"the battle to feed all of humanity is over”

POPULATION CONTROL OR

RACE TO OBLIVION? * “Inthe 1970s and 1980s hundreds of

millions of people will starve to death in
lIIHE spite of any crash programs embarked

Pn P“lA"nN upon now."
« "India couldn't possibly feed two hundred
B"MB million more people by 1980,"

FOUR PEOPLE WILL HAVE DIED FROM
STARVATION, MOST OF THEM CHILDREN,

* "l have yet to meet anyone familiar with the
.,~ It situation who thinks that India will be self-
sufficient in food by 1971."
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Technology I1Is Game Changing
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Hybrid genetics
& biotechnology
have driven a
five-fold
Increase In
average U.S.
corn yields
since 1940.
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If we use our agricultural resources more efficiently we can feed
the world’s population and produce bioenergy.

Corn Yield Trends
(Bushel Per Acre)

1990 2000 2005

UsA T 03 137 149
~ Argentina 60 93 109
. China | 74 78 80
DB T s 47 54

Source: Monsanto/Doane Forecast Slide from Richard Hamilton,



The biomass conversion challenge

OH Selective conversion of a highly functionalized oxygenated
HO o molecule, into a flammable liquid product that fits into
OH current infrastructure.

HO
Biomass-derived 5 iauid Fuel
Feedstocks 0 Iquid Fuel
High functionality - 2 » h('m;\]c':']l:]c“on?lslf[yb'l't
Low Thermal Stability eQzZ[ Igh Thermal Stability
Cr
1012 /\/\/
Challenges
* Yields

« Economics

* Products that fit into existing infrastructure

« Capital Cost

« Decrease number of process steps WISCONSIN
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Gasification

Biomass Feedstocks

Cellulosic Biomass Fast Pyrolysis

v

v

(wood, wood wastes,
corn stover, switch
grass, agricultural
waste, straw, etc.)
Chemical Structure:
cellulose,
hemicellulose, lignin

Liquefaction

<

Corn Stover

\

Bagasse T Hydrolysis
Corn ———» Comm
Grain Hydrolysis
Sugarcane >

Pretreatment & <

3 Major Routes to Cellulosic Biofuels:

1. Syn-gas routes
2. Bio-oil routes

3. Depolymerization routes

MeOH Synthesis

Syn-gas Olefins

CO + H2 ) —>
Fischer-Tropsch Synthesis

Alkanes (Diesel Fuel)

Steam-Reforming
» Aromatics, hydrocarbons (Gasoline)

Hydrodeoxygenation

Bio-oils _ —» Aromatics, light alkanes, (Gasoline)
(Sugars, Acids, Zeolite Upgrading
Aldehydes, - » Direct Use (Blend with Diesel)
Aromatics) Emulsions
— Alkyl benzenes, paraffins (Gasoline)
Hydrodeoxygenation
Lignin - — Aromatics, coke (Gasoline)
(coumaryl, Zeolite upgrading
coniferyl and
: » Cg-C, 5 n-Alkanes, Alcohols
sinapyl alcohols) Aqu. Phase Proc. 8713

C5 Sugars ——» Furfural » MTHF (Methyltetrahydrofuran)

(Xylose) Dehydration Hydrogenation

v

Levulinic Esters

C6 Sugars Dehymr: LeyuIInIC Esterification
Acid —> MTHF
C6 Sugars e \ Hydrogenation
(Glucose, Fructose) _ » Ethanol, Butanol
Fermentation

Sucrose (90%)

» C,-C; n-Alkanes
Glucose (10%) < All Sugars » APD/H 1o
» Aromatics, alkanes, coke
Zeolite
» Hydrogen
\ J Aqueous or S.C. Reforming

Key: Black - Chemical Conversion
Green - Biological Conversi




Heterogeneous (Inorganic) Catalysis
Reaction Engineering
Process Design/Economics
Process Chemistry
Transport Effects

Process Intensification
Heat Integration

Chemical Engineers concern themselves with conversion of inexpensive
raw materials into more valuable products.

Design and operation of processes
Lots of new computational and experimental tools have been developed that
can aid chemical engineers to more quickly develop and scale up new
processes.
WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON



Pyrolysis Based
Technologies for Biomass
Conversion
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Pyrolysis Video
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Bio-oil: Characterization
C:47.0% Oak Wood Bio-oil

H:8.2%

Viscosity: ~150 CPI

0:44.8% =_—

e —

‘ Elemental Viscometry ‘

Composition

Non-Combustibles Solubility
Ash:0.03 wt% Acidity Water: 62%
Methanol: 98%
M A N pH: 2.75 ‘Toluene: 14%
- - ‘ Diesel Fuel: 4%

S. Czernik, A. V. Bridgwater, Overview of applications of bigmass fast
pyrolysis oil. Energy Fuels 18, 590-598 (2004). WISCONSIN
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2504 benzene = toluene
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Catalytic Fast Pyrolysis:

1759
p-.m- xylene

Process Development ; T nene

100 o-xylene _/ e
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GCMS of raw liquid only observe aromatics

- - -

Feed:

- Process Development Unit L
Pine :
Wood (Continual flow of catalyst and Raw Liquid Aromatic

biomass on stream since April Produgt (Contains Praducts
Sawdust 2011) aromatics and water) WISCONSIN
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a >
Anellotech
Products

Polyethylene polyester films and resins, &
terephthalate (PET) plasticizers

MULLER

$120 billion aromatics market raw materials to - ]3f
make plastics.
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Production of Renewable Aromatics by Catalytic

Fast Pyrolysis of Biomasspurge Jases
(CO, CO,, olefins)

>
Stream 6 Stream 5
Biomass Aromatics, olefins, Aromatics
: _ >
Biomass and olefins gases and water Separation
. > Reactor P Stream 4
Stream 1 Stream 2 Stream 3 system R
Waterand water
All chemistry soluble compounds
occurs in one | Cokeand Fresh
single reactor. | Catalyst Catalyst
Air Combustion gases
> Regenerator >

Torren R. Carlson, Yu-Ting Cheng, Jungho Jae and George W. Huber, — — : ﬁ}
Production of Green Aromatics and Olefins by Catalytic Fast Pyrolysis of —nr J\& 1
Wood Sawdust, Energy and Environmental Science (2011) 4 145-161. ==



Multiple Phenomena involved in Catalytic
Fast Pyrolysis

Fresh —  S®
o Catalyst Products
Phenomena occurring in (to separation)
CFP
1. Fluidization of particles
2. Heat transfer to Biomass
from

biomass particles hopper
3. Solid biomass pyrolysis
4. Bubbles formation and

growth
5. Mass transfer between
phases
6. Reactions in gas phase Spent
. . catalyst to
7. Catalytic reactions regenerator

Distributor

T Plate

Fluidization Gas



Hydrolysis based
Technologies for Biomass
Conversion
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Biomass can undergo hydrolysis reaction to
make carbohydrates and other products

» Challenge: Complex reaction scheme

H,0 7/HEAT
Oligosaccharides H,0
Cellulose
A ose
7 oH OH N
HO 7 arobibse °’HEAT49V°gllH @ .
o 1O A/
o OH it e nHZO OH,, -
0 oH HO
K OH OH OH J K
Y

Decomposition
Products (humins)

G. Varhegyi, P. Szabo, W.S.-L. Mok, and M.J. Antal, Journal of Analytical and Applied Pyrolysis 26 (1993) 159-174.

K. Kato, T. Doihara, F. Sakai, and N. Takahashi, Kenkyu Hokoku - Nippon Senbai Kosha Chuo Kenkyusho 108 (1966) 361-364.
N. Abatzoglou, J. Bouchard, and E. Chornet, The Canadian Journal of Chemical Engineering 64 (1986) 781-786.

K.R. Heimlich, and A.N. Martin, Journal of the American Pharmaceutical Association, Scientific Edition 49 (1960) 592-597.

P.C. Smith, H.E. Grethlein, and A.O. Converse, Solar Energy 28 (1982) 41-48.
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Conceptual Process Design of Aqueous Phase Hydrodeoxygenation Technology

H, Non-condensable gases:
l _ H,, CH,, C,Hg, CHg, CO

Feedstocks: Liquid Products:

Carbohydrates
y Low Aqueous phase Separation C4-C6 Alkanes

Bio-oils —>| temperature -
) ) hydrodeoxygenation system S -
Hydrolysis hydrogenation Y Yo Y g;_%iﬂ%?;;lss
products Reactor 1 Reactor 2 Tetrahydrofurans
Aqueous (Ketones)
Unreacted feedstocks stream
& by-products (ie: —VVasTie Water
sorbitan, isosorbide) treatment
fnr‘ilify

Reactor 1 catalysts: High rate of C=0O Hydrogenation

Reactor 2 catalysts: High rates of Hydrogenation (C=0; C=C; C-0O-C)
High rates of Dehydration (alcohols; diols)
Low rates of C-C bond cleavage (decarbonylation; retro-aldol)

Li, N.; Tompsett, G. A.; Huber, G. W. ChemSusChem (2010) 3 1154-1157
D. C. Elliott, Energy Fuels 21, 1792-1815 (2007) WISCONS[N



Petroleum derived feedstock made from biomass
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*Refineries would prefer mixtures rather than single components. '

*Red and Blue process optimized for tridecane production.

*Red process optimized for production of a petroleum refinery i
feedstock: mixture of C7-C30 mostly cyclic alkanes.

*Red is a high quality petroleum feedstock similar to heavy cycle oil
(HCO) or light cycle oil (LCO).

H. Olcay, A. V. Subrahmanyam, R. Xing, J. Lajoie, J. A. Dumesic, G. W. Huber; Production of
Renewable Petroleum Refinery Diesel and Jet Fuel Feedstocks from Hemicellulose Sugar Streams; WISCONSIN
Energy and Environmental Science, in-press.



Engineers are critical to solve our energy challenges
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Conclusions

O Everything that is made from petroleum can be made from biomass and
other renewable resources

Basic catalytic studies aid in the design of more efficient processes

Biomass can be converted by three main routes: gasification, pyrolysis and
hydrolysis

a Catalytic fast pyrolysis allows the direct production of aromatics and olefins
from solid biomass in a single catalytic step.

A Hydrodeoxygenation can be used to convert solubilized biomass into a
liguid fuels, alcohols and polyols.

a Chemical Engineers will be key to help prevent an energy crisis and solve
our problems created by fossil fuels.
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Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels

www.ecs.umass.edu/biofuels
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