
Topics Covered

- Types of Composite Materials
- Properties of Composite Materials
- Composite Manufacturing Processes
- Design, Manufacturing and Testing of the Composite MLB Helmet

Examples of Composite Sporting Goods

- Arrows
 - Increase stiffness to decrease energy loss
- Baseball and Softball bats
 - Durability, performance, sweet spot size, handle flex
- Hockey Sticks
 - Reduce weight, adjust flex or kick point
- Fishing rods
 - Lighter, increase sensitivity and adjust flex profile
- Tennis Rackets
 - Reduce weight, increase sweet spot

A composite material is a combination of two or more materials differing in form or composition that retains their identities

100x

Why Composites

- Anisotropic nature of composites design to a direction or loading condition
- Good strength to weight ratio
- Versatile manufacturing processes
- Large amount of material combinations
- Aesthetics

Typical Components of the Composite

- Binder (Resin or Matrix)
 - Epoxy (Thermoset)

	Density (g/cc)	Modulus (Msi)	Tensile Strength (Ksi)	Elongation (%)	Cost (\$/lb)
Ероху	1.20	0.30 - 0.50	1.0 - 14	2 – 30	\$5 - \$20

- Reinforcement (Fiber)
 - Fiber Glass
 - Aramid
 - Carbon

	Density (g/cc)	Modulus (Msi)	Tensile Strength (Ksi)	Elongation (%)	Cost (\$/lb)
E Glass	2.54	11	500	4.8	\$ 1.00
Aramid	1.44	19	550	2.8	\$ 18.00
Carbon	1.78	33 - 85	500 - 850	0.7 – 2.1	\$13 - \$100

Fiber Forms

- Continuous tow
 - Different yields (bundle size, g/1000m)
- Braid "socks"
 - Different diameter and thickness
- Woven
 - Different types for: processing, thickness, and aesthetics
- Prepreg fiber with uncured resin
 - Unidirectional or woven
 - Very consistent: resin content and thickness

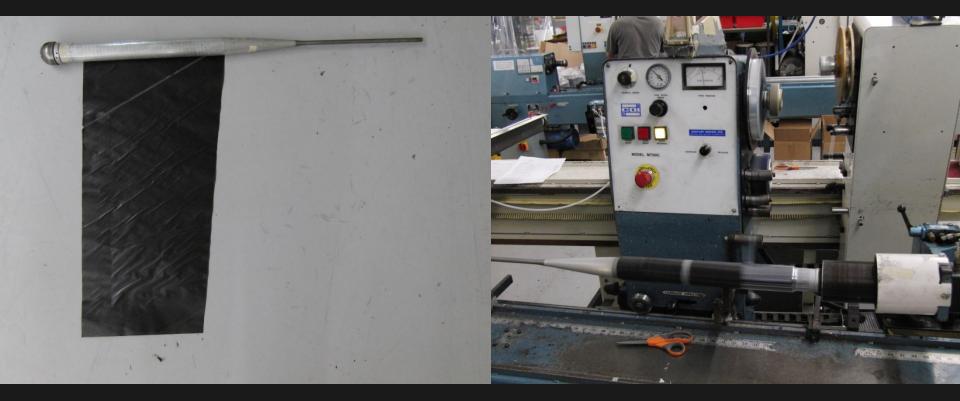
Cured Composite Properties

- Apply rule of mixtures for composite properties
- (Volume Fraction fiber)*(Property fiber) + (Volume Fraction resin)*(Property resin) = Property of the Composite
- Strength (0.5 * 500) + (0.5 * 10) = 255

	Density (g/cc)	Modulus (Msi)	Strength (Ksi)	Cost (\$/lb)
Carbon Epoxy	1.55	16.50 - 40	250 - 450	\$9.00 - \$50
E Glass Epoxy	1.87	5.50	255	\$ 3.00
Aramid Epoxy	1.33	9.50	280	\$ 11.50
7075 – T6 Aluminum	2.82	10.0	86	\$ 16.00
4150 Steel	7.89	30.0	280	\$ 3.00

Wet lay-up Vacuum bag

- Cut woven material
- Wet out pattern
- Lay on release film
- Lay on bleeder cloth
- Lay on bag and seal
- Pull vacuum while resin cures


Resin Transfer Molding

Filament Winding

Roll Wrap

Bladder Molding

- Bladder molding Pressure from the inside
 - Prepreg material is applied over a bladder
 - Preform is placed in a mold, bladder is inflated
 - Heat is applied to cure

Process Comparison

• Wet lay-up – Canoes, helmets

- Good exterior finish, complex shapes, low cost

- Resin transfer molding bats, canoe paddles
 - Good consistency, mid part cost and equipment investment
- Filament winding bats, golf shafts
 - Lower material cost, multiple parts, high equipment investment
- Roll wrap arrows, fishing rods, golf shafts, bats
 - Tubular parts, good consistency
- Bladder molding bike frames, tennis rackets, golf shafts
 - Good exterior finish, higher part cost

100 MPH Composite MLB Helmet

- Timeline
 - First discussed the project fall of 2010
 - Had a big and heavy ABS helmet that passed
 - Goal: 30% lighter and 15% smaller
 - Stiffness seemed to help lower SI
 - First mold in house January 2011
 - First part tested March 2011 and passed
 - Did not get another to pass for 2 months
 - Presented new design to MLB in June 2011
 - Set up production and running November 2011

Determine Materials and Process

- Wet Lay-up Vacuum bag was chosen
 - Need for good exterior finish
 - Complex shape
 - Multiple piece mold to be able to remove the part
- Carbon fiber was chosen
 - Maximize stiffness
 - Minimize weight
 - Started with standard "off the shelf" woven carbon
- Epoxy resin was chosen
 - Good pot life
 - Ease of use
 - Very durable/tough system

Issues

- Weave did not conform to the complex shape
 - Developed a "looser" weave to be more pliable
 - Developed a thick material to reduce the number of patterns
- Surface finish was very poor
 - Started testing standard spray gel coats (polystyrene)
 - Too much smell
 - Development our own epoxy gel coat
 - Tougher and production friendly
- Difficult to get consistent vacuum
 - Development a box to put the mold with a reusable silicone bag
- Cycle time was too long
 - Tried different resin but nothing was as durability as the first resin
 - Started heating the box to decrease cure time

Helmet Lay-up

- Assemble Mold
- Apply gel coat
- Apply resin to weave
- Lay in weave
- Lay in peel ply
- Lay in perforated film
- Lay in bleeder cloth
- Seal bag
- Pull vacuum and heat

Left half of mold

Molded Helmet

- Remove from mold
- Trim perimeter
- Cut holes
- Sand
- Paint
- Insert pads
- Apply decals

Head Form to measure Peak "G" force and Severity Index

Future of Composites in Sporting Goods

- Helmets lighter, dual ear
- More nano technology
- More cost effective non-destructive testing
- Lower cost materials and processes to make them more available to everyone

Summary

- With the anisotropic nature of composite a person can design the stiffness or strength in the direction or plane that is the most beneficial for a specific product
- Large amount of design options with different fibers, resins and fiber content enables a person to mix and match materials and processes for a given application