Video Analysis for Augmented and Mixed Reality

Kiyoshi Kiyokawa Osaka University

Who am I ?

A researcher on AR / MR / VR / 3DUI / CSCW / Wearable Comp.

Visualization / Wearable computing / Context-awareness

Tabletop display / Multi-touch interaction / New display HW / 3D User Interfaces

3D reconstruction / 3D remote collaboration / Remote robot control

What is Augmented Reality ?

Technology that 'augments' the real world by computer information

Feiner et al., KARMA (1991)

Kiyokawa et al., VLEGO (1997) Kato et al., ARToolkit (1999)

SCE, The Eye of Judgment (2007)

Layar (2009)

Why Augmented Reality ?

Direct coupling of computer intelligence to human behavior provides **intuitiveness** and **efficiency**

Information Retrieval

Conventional User Interface

Manual search on the web

Photo-taking / Reviewing on monitor

Direct assessment

Let's check out the shopping information.

Direct search

Why Augmented Reality ? (cont'd)

AR-ready devices getting ubiquitous

- Smartphones / Tablets / Personal Game Consoles
 - Display / Camera / Compass / GPS / Networking

Google Project Glass

- AR market expected to expand exponentially
 - Global AR Market Forecast by Research and Market (2011)

 \rightarrow

- Gaming, Automotive, Medical, Defense, E-learning & GPS Applications
- □ People use AR 0.1% (2011)→

1% (2016)

Revenue \$181M (2011)

\$5,156M (2016)

What is Mixed Reality ?

- A superset concept of Augmented Reality
 - A continuum with two extrema, "real" and "virtual"

Real Environment

Mixed Reality (Milgram et al. '94)

Virtual Environment

My view

- AR is a subjective experience and human-oriented
 - **Power-gain** is the key (How useful the UI is)
- MR is an objective entity and technology-oriented
 - **Consistency** is the key (How well V and R are mixed)

Video Analysis for AR / MR

Geometric Consistency

Where should the information be shown ?

Photometric Consistency

- **How** should the information be rendered ?
- MR-oriented topic

Scene Understanding

- What information should be presented ?
 - AR-oriented topic

Geometric Consistency

Where should the information be shown ?

"Where" – Geometric Consistency

Vision-based Pose Estimation

"Where" – Geometric Consistency

Vision-based Pose Estimation (cont'd)

"Where" – Geometric Consistency

Visual Tracking and Reconstruction

Region-based

- Bastian et al.
- Umakatsu et al.

Real-time RGB-D camera

KinectFusion

Photometric Consistency

How should the information be rendered ?

Photorealistic Rendering

- □ How to acquire the lighting condition of the real environment
- How to render photorealistic objects in real-time

Global Illumination

- Evaluating light reflected from a point x by taking into consideration all illumination that arrives at the point
- Rendering Equation
 - How to acquire a Bidirectional Reflectance Distribution Function (BRDF)
 - How to render objects with a BRDF
 - □ Use tons of random rays (Monte Carlo methods) e.g. Ray-tracing / Radiosity

Image-based Lighting with HDRI

High Dynamic Range Imagery + Global Illumination (Debevec, '98)

1) Acquire a radiance map by a light probe

2) Build a light-based model of the scene

3) Render virtual objects with global illumination

Inverse Lighting with LDRI

Inverse lighting and photorealistic rendering for AR (Aittala, '10)

Basic rendering

Photorealistic rendering

Advanced Visual Effects for AR / MR

Motion blur / Depth of field

Diminished Reality

Color harmonization

Scene Understanding

What information should be presented ?

"What" – Scene Understanding

Sushi Scenario

How can we annotate each sushi piece ?

Powerful object recognition technology is necessary to handle the real world problems Wavelet / SIFT / SURF / Haar-like / HOG / Shapelet ... "What" – Scene Understanding

Real-time Object Recognition for AR

"What" – Scene Understanding

Eye tracking for Context Awareness

Parallax-free, super wide-view eye camera (Mori et al., '10)

Eye tracking OLED display (Fraunhofer IPMS, '11)

Conclusion

Where": Geometric Consistency

- Tracking and Reconstruction dramatically improved
- Practical solutions at hand, though some problems remain

"How" : Photometric Consistency

- Photometric studies getting more and more attention
- Many open issues remain

What" : Scene Understanding

- Scene understanding / object recognition much studied in CV field, but still rare in AR / MR systems
 - Context-aware AR will be the core topic in near future

Video analysis for AR / MR will be even hotter in future

Thank you very much!

Any questions ?