FIGHTING CLIMATE CHANGE
BY ENGINEERING AIR POLLUTION
To BRIGHTEN CLOUDS
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Global Mean Temperature “Model”

(N.B. Does Not Address Regional+Precipitation Changes)

A\ Albedo Effect (Sunlight
Reflection Methods — SRM)
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Carbon Dioxide Removal (CDR) vs.
Solar Radiation Management (SRM)
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Carbon Dioxide Removal (CDR) vs.
Solar Radiation Management (SRM)

Rapiative Forcing COMPONENTS
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POLLUTION AND THE PLANETARY ALBEDO

S. TWOMEY

Institute of Atmospheric Physics, The University of Arizona, Tucson, Arizona 85721, U.SA,

{ First received 27 February 1974 and in final form 17 May 1974)

Abstract—Addition of cloud nuclei by pollution can lead to an increase in the solar radiation ref-
lected by clouds. The reflection of solar energy by clouds already may have been increased by the
addition of man-made cloud nuclei. The albedo of a cloud is proportional to optical thickness for
thin clouds, but changes more slowly with increasing thickness. The optical thickness is increased
when the number of cloud nuclei is increased. Although the changes are small, the long-term effect
on climate can be profound.

RH>100%
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< scattering | Cloud albedo effect:
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Historical Context:
Combustion Emission Trends

1950 1980

* Fossil fuel usage and biomass burning
have increased with human population,
resulting in increased greenhouse gas
and aerosol emissions



Historical Context:
Combustion Emission Trends

1950 1980 2050

Fossil fuel usage and biomass burning e Howeuver, in industrialized nations the
have increased with human population, emission of scattering aerosols has
resulting in increased greenhouse gas been Engineered to improve air

and aerosol emissions quality.
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March September

To offset most sea ice
reduction in Arctic, need
70% seeding.

Change in Sea Ice Fraction compared to control
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But, how certain is this result?

Environ. Res. Lett. 4 (20090045112

lifetime may be modified by other processes that counteract
the influence of increases to CCN [12-19]. These numerical
simulations of manne stratocumulus and trade wind cumulus
clouds revealed some situations where nonlinear dynamical
responses to increasing CCN actually decreased cloud liquid
water content and either decreased or did not change the
albedo. It is clearly critical to our gecengineering strategy
that these nonlinear interactions be understood, guantified,
and verified and their relative importance compared to the
Twomey effect be assessed. A better understanding of cloud
microphysics and dynamics is required before we will know
under what circumstances increasing the CCN number will
indeed increase the planetary albedo. This understanding will
be achieved eventually through a combination of fieldwork and
improvements to our theoretical understanding and modelling
of clouds.



* |n addition to adding new nuclei, particles change the rate
at which water condenses, which changes the maximum
cloud “supersaturation” (Relative Humidity — 100%)
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Eastern Pacific Emitted Aerosol Cloud

Experiment (E-PEACE) 2011
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Where is highest Sc probability?

Daytime Stratocumulus -

Cloud Amount 0% 10% 20%  30% 40%




Prior Use of Paraffin Oil Smoke for

Plume Dispersion Studies

Studies of Atmospheric Diffusion from a Nearshore Oceanic Site!

GILBERT 5. RAYNOR, PauL MIcHAEL, ROBERT M. BROWN AND S. SETHURAMAN

Brookhooen Nalionol Laboralory, Upton, N. ¥. 11973
{(Manuscript received 26 July 1974, in revised form 20 January 1975)

ABSTRACT

&rﬁearchprngrmlsmpmgmat Ermk]uwn Na tmna.lLaburatm}r to dﬂemnne the nature of atmo-
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Fic. 2. Landing craft, Model LCM-8. emitting oil-fog smoke.



R/V Point Sur Smoke Operations

U.S. Army “Smoke/Fog Generator”
ca. 1980 for “battlefield obscuration”
E-Bay price: $100 ea.

Shell Diala $10/gal
Sponsored by




R/V Point Sur Smoke Operations

b




CIRPAS Twin Otter Measurements of Smoke from R/V Pt Sur




Three Parts of Engineering Clouds

* Did we produce enough smoke particles?

* Do smoke particles make cloud droplets?

* Do the droplets change albedo?
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Three Parts of Engineering Clouds

* Did we produce enough smoke particles?

— Yes.

* Do smoke particles make cloud droplets?
— Yes.

* Do the droplets change albedo?
— Sometimes. How often?




Why Did So Few Tracks Form?

July 1-31 (2011) in region 22 days 0 days NK NK
July 12-23 (2011) in region 4 days variable NK NK
July 12-23 (2011) at ship 1 day 2 days ‘ 7 days ‘ 2 days

The region near the ship had multi-layered clouds 7 out of 12

days; particles don’t mix up to the top layer so tracks don’t form
on these days.

How important is this effect globally for cloud albedo forcing?



Multi-Layered Cloud Frequency Reduces

CIouIbed

Muelmenstaedt et al., in prep.
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* Seeding clouds doesn’t “work” if there are other clouds above them






This was not a geoengineering experiment,

but it is worth noting that...

Two man-made technologies have demonstrated an observable cooling

e Cargo ships
— Price: $100k/dy
— 100k gal bunker/dy burned

* 1 nK warming from CO,
* 2 nK cooling from CDN

— Cooling/Warming ~ 2 (1)

* R/V Pt Sur with smoke generators
— Price: $15k/dy
— 500 gal diesel/dy burned
¢ 0.008 nK warming from CO,
— 200 gal oil/dy
* 0.4 nK cooling from CDN
— Cooling/Warming ~ 50 (+20)

Assumptions: 100-yr time horizon, scaled to climate sensitivity of IPCC [2007] median value (i.e. 3K per 280 ppmv); 15%
increase in reflectivity for track on 16 July; assume track persists in daylight for 6 hr normalized by 100 years.
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The meeting in Mainz also leamed, though, of another
experiment that has met with better fortune. Last September
a team led by researchers from the Scripps Institution of
Oceanography; in La Jolla, California, looked at whether clouds
could be whitened artificially (and thus caused to reflect more
sunlight back into space) using particles emitted from a boat.
Such brightening has been observed in the exhaust plumes of
cargo ships for some time, but Lynn Russell, who ran the
experiment, was still surprised by how much brightening the

Related topics

Environmental problems
and protection

Climate change

MNature and the
envircnment

Science

Engineering

remains to be seen.

team saw. Though Dr Russell's experiment had been designed
mainly to look at how clouds form naturally, it paves the way

for future work on gecengineering. How that will affect attitudes to global warming




Brightening clouds “works” But it’s complicated
(to offset some warming) (so scale up is uncertain)

1Shingler et al., 2012, Atmo. Chem. 3Russell et al., 2012, AMBIO
Phys. “Muelmenstaedt et al., 2012, in prep




Review

Engineering geo-engineering

Timothy A. Fox®* and Lee Chapmanb

& Institution of Mechanical Engineers, London, SWIH 9JJ, UK
b School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, B15 2TT, UK

ABSTRACT: This paper reviews the geo-engineering approach to tackllng climate change. The failure Df Lhe 15 Umted
Nations Framework Convention on Climate Change Conference 4
reduction agreement makes the deployment of geo-engineering

looks at a variety of global and local approaches to geo-engig] Table I. Initial ranking of engineering feasibility of schemes
cycle engineering and attempts to assess the feasibility of the d ibed in thi for deol i at ‘at al
despite the plethora of ideas generated by the science commun escn mn : ISI pﬂIpEl‘ or ) EP_D}[mEn. an appropriate scalc
the initial engineering assessment of these techniques and this (those in italics require international agreement).

scheme can be fully considered. Hence, the paper concludes b
programmes of research at the feasibility level, to inform discug
local geo-engineering and adaptation measures. Copyright © 2(]

J} Decreasing engineering Reforestation/afforestation
feasibility, from feasible Aerosols
(top) to unfeasible (bottom) Carbon capture: marine
sequestration
Ocean fertilization

Carbon capture: geological
sequestration
Increased ocean alkalinity

Biochar

Albedo management

Algae on buildings
Spaceborne solar reflectors




CIRPAS Twin Otter Measurements of Smoke from R/V Pt Sur




FIGHTING CLIMATE CHANGE
BY ENGINEERING AIR POLLUTION
To BRIGHTEN CLOUDS




