Removing Carbon Dioxide from the Atmosphere: Scientific, Technological and Societal Challenges

Christopher W. Jones

Georgia Institute of Technology School of Chemical & Biomolecular Engineering Atlanta, GA 30332

2012 Frontiers of Engineering Program Thursday, September 13, 2012

Presentation Overview:

1. Why alternative energy technologies will not solve the climate problem.

- 2. Carbon dioxide capture and utilization/storage.
- 3. Direct capture of carbon dioxide from the atmosphere. "Air Capture"

4. Technical, political, societal challenges facing air capture.

Alternative Energy Technologies:

- Alternate (green) energy technologies are needed.
- These technologies will not supplant use of fossil energy in our lifetime.
- Why?

Energy Problem = Population Problem

Year	Population
1650	0.5 Billion
1900	1.6 Billion
2011	7.0 Billion

http://www.census.gov/population/international/data/idb/worldpopgraph.php

Energy Problem = Population Problem

http://esa.un.org/wpp/Analytical-Figures/htm/fig_2.htm

School of Chemical & Biomolecular Engineering

Projected Energy Consumption

Fossil energy will continue to play a dominant role.

Source: US EPA, 2012

Source: IPCC, 2007

Presentation Overview:

- 1. Why alternative energy technologies will not solve the climate problem.
- 2. Carbon dioxide capture and utilization/storage.
- 3. Direct capture of carbon dioxide from the atmosphere. "Air Capture"

4. Technical, political, societal challenges facing air capture.

CO₂ Capture & Sequestration:

- Carbon capture and sequestration (CCS) as a climate change mitigation strategy.
- CCS is (i) the capture of CO₂ when released from combustion (ii) compression and transport by pipeline, and (iii) storage in geological formations.
- Traditional CCS can be adapted to large, fixed sources, called "point sources."

http://www.epa.gov/climatechange /ghgemissions/gases/co2.html

GeorgiaInstitute

Envisioning Widespread Carbon Capture and Sequestration:

Source: IPCC, 2005

School of Chemical & Biomolecular Engineering

GeorgiaInstitute of **Tech**nology

School of Chemical & Biomolecular Engineering

Georgia Institute of Technology

School of Chemical & Biomolecular Engineering

Georgia Institute of Technology

CCS Today:

- Many CCS installations operating globally at pilot scale.
- Why are we not doing this on a large scale today?

CCS Today:

- Many CCS installations operating globally at pilot scale.
- Why are we not doing this on a large scale today?
- Cost-benefit analysis:

(i) only addresses 40% of sources
(ii) skeptical public in USA
(iii) projected cost: \$60B/yr in USA (~2% of GDP)

http://www.epa.gov/climatechange /ghgemissions/gases/co2.html

GeorgiaInstitute

fechnologiv

CCS Today:

- Many CCS installations operating globally at pilot scale.
- Why are we not doing this on a large scale today?
- Cost-benefit analysis:

(i) only addresses 40% of sources
(ii) skeptical public in USA
(iii) projected cost: \$60B/yr in USA (~2% of GDP)

http://www.epa.gov/climatechange /ghgemissions/gases/co2.html

GeorgiaInstitute

fechnologiv

Presentation Overview:

- 1. Why alternative energy technologies will not solve the climate problem.
- 2. Carbon dioxide capture and utilization/storage.

3. Direct capture of carbon dioxide from the atmosphere. "Air Capture"

4. Technical, political, societal challenges facing air capture.

CO₂ Capture from Air or "Air Capture:"

Plants are our lowest cost atmospheric CO₂ removal option.

CO₂ Capture from the Atmosphere:

- Mobile sources (planes, ships, cars, trucks) cannot be addressed by traditional CCS.
- Direct extraction of CO₂ from the atmosphere can, in principle, account for all emission sources.
 - -- unlike other climate engineering approaches, CO₂ capture from air fits <u>the traditional pollution clean-up paradigm</u>.

Extraction of CO₂ from ambient air as an environmental technology pioneered by Lackner and coworkers (now Columbia University):

Lackner KS, Grimes, P., Ziock, H.-J. 1999. Carbon dioxide extraction from air? Los Alamos National Laboratory, LAUR-99-5113, Los Alamos, NM, 1999

Will air capture be expensive or technically challenging?

Point Source Capture vs. "Air Capture":

CO₂ Source Properties: Air/Point Source Exhaust

Property	Air	Flue (Point Source)	
Amount of CO ₂	3 teratonnes (3 x 10 ¹² tonnes)	20 gigatonnes/yr (20 x 10 ⁹ tonnes)	
Distribution	400 ppm - "infinite" mostly uniform source	5-15% point sources 10% - 250x more conc. vs. air	
Movement	wind, fans	fans	

Low CO_2 concentration poses a major challenge.

Base Case Scenario of Energy Cost:

What is the best we can do? The thermodynamic limit.

Post-Combustion Capture from Coal-fired Power Plant Flue Gas:

House et al., *Energy Env. Sci.* 2009, 2, 193.

CO₂ Capture from Ambient Air:

-- only first step different

Base Case Scenario of Energy Cost:

- Traditional CCS from point sources is expensive.
 24 kJ/mol CO₂ minimum energy
- Air capture only differs in the first step.
 ~40 kJ/mol CO₂ minimum energy

- Air capture is thermodynamically feasible.
- Is air capture technically feasible and might it be a complimentary or alternate technology to traditional CCS?

- Low Pressure Drop, High Surface Area Contactor:
 must move 125-375 X more gas through process vs. flue gas
- Adsorbent with strong binding energies with CO₂ (thermodynamics)
 must adsorb a large amount of CO₂ at low P_{CO2}.
- 3. Adsorbent and process design that allows for rapid adsorption/desorption rates (kinetics)
 - need to remove massive amounts of CO₂.
- 4. Low cost source of energy for adsorbent regeneration by temperatureswing.
 - adsorption is exothermic, desorption is endothermic
- 5. Acceptable capital costs and ultra-long process/material lifetime - sorbent degradation and lifetime is a critical element.

Low Pressure Drop, High Surface Area Contactor:
 must move 125-375 X more gas through process vs. flue gas

Ceramic monoliths:

GeorgiaInstitute

School of Chemical & Biomolecular Engineering

JOGTV

- (i) commercially available (Corning)
- (ii) low cost
- (iii) low pressure drop [100-200 Pa or 0.15-0.3 psi]
- (iv) easily coated with adsorbent materials
- (v) high surface area

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Adsorbent with strong binding energies with CO₂ (thermodynamics)
 must adsorb a large amount of CO₂ at low P_{CO2}.

 -- highest capacities ca. 2.2 mol CO₂ / kg sorbent (10 wt%)

3. Adsorbent and process design that allows for rapid adsorption/desorption rates (kinetics)

Georgialnstitute

Off Technology School of Chemical & Biomolecular Engineering

- need to remove massive amounts of CO₂.

Monolith contactor yields good kinetics

- 4. Low cost source of energy for adsorbent regeneration by temperatureswing; Adsorption is exothermic, desorption is endothermic
- Amine adsorption occurs at ambient temperatures (0-35 ° C)
- Only low grade heat for regeneration (80-110 ° C) = waste heat.
- Steam-stripping gives pure CO₂ upon compression = highly efficient

=

Low grade waste heat from:

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

- (i) Manufacturing processes
- (ii) Solar-thermal heating
- minimal costs in short term

Adsorbent

 CO_2

Steam

- Low cost source of energy for adsorbent regeneration by temperature-4. swing; Adsorption is exothermic, desorption is endothermic
- Amine adsorption occurs at ambient temperatures (0-35 ° C)
- Only low grade heat for regeneration (80-110 ° C) = waste heat.
- Steam-stripping gives pure CO_2 upon compression = highly efficient

Low grade waste heat from:

GeorgiaInstitute **Lech**mollogy School of Chemical & Biomolecular Engineering

- Manufacturing processes (i)
- Solar-thermal heating (ii) =

- 5. Acceptable capital costs and ultra-long process/material lifetime - sorbent degradation and lifetime is a critical element.
 - Capital costs significant, installations big (0.01 m² / tonne CO₂-yr)
 - Capital costs for large scale equipment can be estimated.
 - Largest cost unknown = lifetime of adsorption media.

- -- studies underway Georgia Tech and elsewhere
- -- amine degradation (thermal, oxidative)
- -- sorbent blocking (dust, sand, etc.)

Practical "Air Capture" Processes:

Global Thermostat, NY/Palo Alto, Georgia Tech - designed sorbents in a pilot-scale air capture process, http://globalthermostat.com/ -- Peter Eisenberger, Graciela Chichilnisky

Three other significant efforts also underway:

Carbon Engineering, Calgary; http://www.carbonengineering.com/

- -- basic liquid solutions (absorption)
- -- David Keith

Kilimanjaro Energy, NY/SF; http://www.kilimanjaroenergy.com/

- -- humidity swing with ammonium resins (absorption/adsorption)
- -- Klaus Lackner

Climeworks, Zurich; http://www.climeworks.com/

-- adsorption with amines (alternate gas contactor and regeneration methods from Global)

Presentation Overview:

- 1. Why alternative energy technologies will not solve the climate problem.
- 2. Carbon dioxide capture and utilization/storage.

3. Direct capture of carbon dioxide from the atmosphere. "Air Capture"

4. Technical, political, societal challenges facing air capture.

- Technically, air capture is feasible.
- If power comes from fossil energy, is there net CO₂ removal from the atmosphere?
 - -- first generation NaOH process (American Physical Society study), perhaps not
 - -- for monolith/amine/steam-stripping design, energy needs are very promising:
 - -- low T process/waste heat = 80% of energy
 - -- electrical energy (draft fans) = 20% of energy
 - -- if steam from waste heat / solar thermal (natural gas),
 1 CO₂ released for every 20 (2) CO₂ captured.

Kulkarni and Sholl, Ind. Eng. Chem. Res. 2012, 51, 8631.

- Technically, air capture is feasible. Net CO₂ removal from atmosphere.
- Economics are not well-established. Estimates vary widely:
 - -- No published economic estimates exist from the core businesses themselves.

-- Public, 3rd party cost estimates: ca. \$100 - \$1000+ / ton CO₂

 Long-term pilot data are needed to allow for accurate projections of capital and operating costs

How do we get these data?

- Funding challenges:
 - -- total federal funding for traditional CCS¹: \$6B+
 - -- total federal funding for air capture: <\$300K (20,000x)
 - -- thus, essentially all investment is private.
- Private investment requires a profit motive.
 - -- greenhouses/algae farms (small scale, small payoff / significant risk, long time horizon)
 - -- CO₂ as carbon source for fuels/chemicals (fuel = VERY long term, chemicals = VERY small scale)

1. CRS Report for Congress, Carbon Capture and Sequestration: Research, Development, and Demonstration at the U.S. Department of Energy, April, 2012.

- Private investment requires a profit motive.
 - -- enhanced oil recovery (EOR)
 - -- inject compressed CO₂ to allow for removal of additional oil
 - -- initial demonstration projects likely here (in parallel with traditional CCS)

-- may cause a fundamental shift in air capture proponents and detractors

Climate protection (original intent of technology) = environmentalists

Oil extraction (most-likely demonstration mode) = fossil energy interests

Path forward for air capture:

Short term (2012-2015)

- Operate pilot processes; obtain data needed for accurate cost projections – private financing
- 2. Implement processes, likely for EOR, generating additional anthropogenic CO₂
- 3. Use experience to move along learning curve, refine process, reduce costs

Medium term (2020+)

4. Couple with conventional CCS to reduce CO_2 emissions and possibly remove CO_2 from atmosphere on a large scale.

Summary:

- Direct capture of CO₂ from air is technically feasible.
- Very early in technology development = major advances still possible/probable.
- Long-term sorbent stability is key to clarifying economics.
- Lack of federal investment, initial implementations likely for EOR

 will actually produce MORE CO₂.
- Medium term: implementation <u>along with</u> traditional CCS for climate change mitigation.

<u>Thanks to:</u>

<u>CO₂ Separation Collaborators</u> Prof. Bill Koros (GT) Dr. Ron Chance (GT) Mac Gray (NETL) Prof. David Sholl (GT)

Dr. Ryan Lively (GT) Dr. Peter Eisenberger (Global Thermostat) Dr. William Addiego (Corning) Prof. Matthew Realff (GT)

Note: Jones has a financial interest in Global Thermostat, LLC

Research Support: CO₂ Capture

CORNING

GE

Energy

Dow

Georgia Institute of Paper Science

The Camille & Henry Dreyfus Foundation, Inc.

King Abdullah University of Science and Technology

School of Chemical & Biomolecular Engineering

Georgia Institute of Technology

Why Not On-Board CO₂ Capture from Cars?

Two Cars: 2012	Cadillac C	TS-V Wagon 20	013 Chevr	olet Cruze Eco
MPG:	19 mpg			42 mpg
Curb Weight:	4396 lbs			3011 lbs
Fuel:	18 gal	(gasoline w/10% e	ethanol)	12.6 gal
CO ₂ /tank:	318 lbs			223 lbs
Large capacity sorbent (CaO): 0.		O): 0.79 lbs CO	₂ / lb sorbe	ent
Sorbent				

Sorbent required*:

402 lbs sorbent 9% wt. car 282 lbs sorbent 9% wt. car

Land Area for Air Capture

- One commercial GT unit captures 2000 ton / yr and covers an area of 5 m x 2 m.
- Increase by a factor of two for additional piping, etc.:
 0.01 m² / ton yr
 large coal plant (50K ton/day) = 0.18 km²
- Installation would be long and thin:

JOGIY

Carbon Engineering

Global Thermostat

School of Chemical & Biomolecular Engineering

Literature Review:

• Choi et al. ChemSusChem 2009, 2, 796.

<u>Chemisorbants</u> -High ∆H_{ads} -Steep isotherm -Strong binding

-- amines -- CaO --hydrotalcites

<u>Physisorbants</u>
 -Low ∆H_{ads}
 -Shallow isotherm
 -Weak binding

--zeolites --carbons

Georgia Institute of Technology

CO₂ Capture with Amines:

Reaction scheme for carbamate formation by reaction of CO_2 with primary or secondary amines.

-- capture with primary or secondary amines: wet - 1:1 N:CO₂ possible dry - 2:1 N:CO₂ possible

 -- capture with tertiary amines: wet – 1:1 N:CO₂ possible dry – does not occur

Mechanism for the reaction of CO_2 with tertiary amines, forming bicarbonate.

Air Capture Conclusions:

- Economic viability of large scale air capture still under evaluation.
 Depends on application: environmental protection vs. CO₂ utilization.
- <u>American Physical Society study</u> concluded air capture is <u>too</u> <u>expensive for environmental protection applications</u>, but report only considers one (poorly designed) process.

http://www.aps.org/policy/reports/popareports/loader.cfm?csModule=security/getfile&PageID=244407

School of Chemical & Biomolecular Engineering

Effect of Amine Type - Air Capture:

Can supported amine materials be effective "air capture" sorbents? Yes! If based on primary amines.

School of Chemical & Biomolecular Engineering

Georgialnstitute

Effect of Amine Type - Air Capture:

Competitive Amine Efficiencies

Amine Efficiency at 25 °C

School of Chemical & Biomolecular Engineering

Amine Adsorbents Stability to Oxidation:

Measure CO₂ capacity

- Exposure to $\overline{100\%}$ O₂ for 24 hr.
- Measure CO₂ capacity again

- -- all sorbents oxidation resistant below ca. 80 °C
- -- primary aminopropyl groups (primary amines are best for air capture) stable at all temperatures!

School of Chemical & Biomolecular Engineering

GeorgiaInstitute

iechnology/

Air Capture Conclusions:

- Air capture may allow for feeding CO₂ to biomass for biofuel production (low concentration) or eventually, CO₂ production for sale or sequestration.
- Algae-based Biofuels:
 - -- algae use CO_2 as a nutrient via photosynthesis
 - -- algae are being engineered to produce hydrocarbons suitable for *Diesel fuel* use as well as *ethanol*.

The Bruce Mansfield Power Plant:

• The yearly output fits in a 400m cube at sequestration pressures (140 atm).

- 2360 MW electric power generation capacity.
- 7 million tons coal burned/year.
- ~41% efficiency.
- 17.5 million tonnes CO₂ generated per year.
- 47,800 tonnes/day CO₂ formed (at ~15% vol concentration).
- 220,000 tonnes flue gas processed per day.

Slide courtesy of Prof. John Kitchin, Carnegie Mellon University.

Post-Combustion Capture Conditions Separation of CO₂:

- Flue gas composition after sulfur scrubbing
 - 13-16% CO₂
 - 4-5% O₂
 - 6-7% H₂O
 - Minor impurities
 - Balance N₂
- Flue gas conditions
 - 60-80°C
 - 10-15 psi
- Flue gas production rate
 - A 2500 MW coal plant produces ~550 kg CO₂/s
 - ~240,000 tons/day of flue gas must be treated
- Capture goal
 - 1200-2000 psi, dry CO₂ for pipeline ready transport

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Point Source Capture vs. "Air Capture":

CO₂ Source Properties: Air/Point Source Exhaust

Property	Air	Flue	
Amount of CO ₂	3 teratonnes	20 gigatonnes/yr	
Distribution	400 ppm - "infinite" mostly uniform source	5-15% point sources 10% - 250x more conc. vs. air	
Temperature	10-30 °C	45-65 °C	
Contaminants	Low levels of contaminants	High levels of SOx NOx , particulates	
Movement	wind, fans	fans	

- Technically, air capture is feasible. Net CO₂ removal from atmosphere.
- Economics are not well-established. Estimates vary widely:
 - -- American Physical Society report: http://www.aps.org
 - -- studied first generation process (known not to work)
 - -- estimated cost, \$600/ton CO₂
 - -- House et al. Proc. Nat. Acad. Sci. 2011, 108, 20428.
 - -- estimate air capture costs by extrapolating costs of other trace component purification processes.
 - --- >\$1000/ton CO₂
 - -- Kulkarni and Sholl, Ind. Eng. Chem. Res. 2012, 51, 8631.
 - -- estimated air capture operating costs for amine-monolithsteam process
 - -- ca. \$100/ton CO₂, depending on location

