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Presentation Overview: 

1. Why alternative energy technologies will not solve the 

climate problem. 

 

 

2. Carbon dioxide capture and utilization/storage. 

 

 

3. Direct capture of carbon dioxide from the atmosphere. 

   “Air Capture” 

 

 

4.    Technical, political, societal challenges facing air capture. 

 



Alternative Energy Technologies: 

• Alternate (green) energy technologies are needed. 

 

• These technologies will not supplant use of fossil energy in our 

lifetime. 

 

• Why?   



Energy Problem = Population Problem 

http://www.census.gov/population/international/data/idb/worldpopgraph.php 

Year    Population 

1650   0.5 Billion 

1900   1.6 Billion 

2011   7.0 Billion 



 Population growth 

     in developing  

     regions 

 

 Low cost  

     energy will be 

     used 

 

 Growth of  

     demand will 

     largely negate 

     growth of green 

     energy use 

 

 Future will require  

     MORE fossil energy 

Energy Problem = Population Problem 

http://esa.un.org/wpp/Analytical-Figures/htm/fig_2.htm 
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Projected Energy Consumption 

 Fossil energy will continue to play a dominant role. 

Source: IPCC, 2007 

Source: US EPA, 2012 
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 Carbon capture and sequestration (CCS) as a climate change 

mitigation strategy. 

 

 CCS is (i) the capture of CO2 when released from combustion  

      (ii) compression and transport by pipeline, and        

      (iii) storage in geological formations. 

 

 Traditional CCS can be adapted                

to large, fixed sources, called                                                  

“point sources.” 

CO2 Capture & Sequestration: 

http://www.epa.gov/climatechange

/ghgemissions/gases/co2.html 

US CO2 emissions by source: 



Envisioning Widespread Carbon Capture and Sequestration: 

Source: IPCC, 2005 
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Schematic of a CO2 Capture Process 
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125˚C 

CO2 for sequestration 

or conversion 

Schematic of a CO2 Capture Process 

Exhaust with 90% 

CO2 removed 

75˚C 

Exhaust from 

combustion. 

Key:             Adsorbent 

 

             Non-CO2 flue gas 

 

             CO2 

http://www.ieagreen.org.uk/march81.htm
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CO2 Capture from Air or “Air Capture:” 

Best Way: Preserve forests 

 

 

Prevent deforestation 

Plants are our lowest cost 

atmospheric CO2 removal 

option. 



CO2 Capture from the Atmosphere: 

 Mobile sources (planes, ships, cars, trucks) cannot be addressed 

by traditional CCS. 

 

 Direct extraction of CO2 from the atmosphere can, in principle, 

account for all emission sources. 
 

 -- unlike other climate engineering approaches, CO2 capture 

    from air fits the traditional pollution clean-up paradigm.  

 

 

 

 

 

 Will air capture be expensive or technically challenging? 

Extraction of CO2 from ambient air as an environmental technology pioneered by Lackner 

and coworkers (now Columbia University):    

 

  Lackner KS, Grimes, P., Ziock, H.-J. 1999. Carbon dioxide  

  extraction from air? Los Alamos National Laboratory,  

  LAUR-99-5113, Los Alamos, NM, 1999 



Point Source Capture vs. “Air Capture”: 

CO2 Source Properties: Air/Point Source Exhaust 

      Property Air Flue (Point Source) 

   Amount of CO2 3 teratonnes 

(3 x 1012 tonnes) 

 20 gigatonnes/yr 

(20 x 109 tonnes) 

 

      Distribution      400 ppm - “infinite” 

mostly uniform source   

5-15% point sources 

10% - 250x more conc. vs. air 

     Movement        wind, fans   fans 

Low CO2 concentration poses a major challenge. 



 What is the best we can do? The thermodynamic limit. 

Base Case Scenario of Energy Cost: 

Dilute CO2 

mixed in N2 

Separated 

CO2 at 1 atm 

Pressurized CO2 

at 140 atm 

Pipeline ready 

~9kJ/mol 

~5% of the output 

~13kJ/mol 

~7% of the output 

~2kJ/mol 

~1% of the output 

Pumping 

underground and 

water displacement 

House et al., Energy Env. Sci. 2009, 2, 193. 

Post-Combustion Capture from Coal-fired Power Plant Flue Gas: 

CO2 Capture from Ambient Air: 
 

 -- only first step different 



 Traditional CCS from point sources is expensive. 

        24 kJ/mol CO2 minimum energy 

 

 Air capture only differs in the first step. 

      ~40 kJ/mol CO2 minimum energy 

 

 

 Air capture is thermodynamically feasible. 

 

 Is air capture technically feasible and might it be a 

complimentary or alternate technology to traditional CCS? 

Base Case Scenario of Energy Cost: 



Needs for a Practical “Air Capture” Process:  

1. Low Pressure Drop, High Surface Area Contactor: 

  - must move 125-375 X more gas through process vs. flue gas 

 

2. Adsorbent with strong binding energies with CO2 (thermodynamics) 

 - must adsorb a large amount of CO2 at low PCO2. 

 

3.   Adsorbent and process design that allows for rapid  

      adsorption/desorption rates (kinetics) 

 - need to remove massive amounts of CO2. 

 

4. Low cost source of energy for adsorbent regeneration by temperature-

swing. 

 - adsorption is exothermic, desorption is endothermic 

 

5.    Acceptable capital costs and ultra-long process/material lifetime 

 - sorbent degradation and lifetime is a critical element. 
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Ceramic monoliths:    (i) commercially available (Corning) 

           (ii) low cost 

           (iii) low pressure drop [100-200 Pa or 0.15-0.3 psi] 

           (iv) easily coated with adsorbent materials 

           (v) high surface area 

Needs for a Practical “Air Capture” Process:  



2. Adsorbent with strong binding energies with CO2 (thermodynamics) 

 - must adsorb a large amount of CO2 at low PCO2. 

 

 

 
Zeolite 13X 

 

-- physisorbant  

   (low Hads ca. 36 kJ/mol) 

400 ppm 

Silica-Amine 

 

 

 

 

-- chemisorbant (high Hads  ca. 85 kJ/mol) 

 

-- highest capacities ca. 2.2 mol CO2 / kg sorbent  

   (10 wt%) 

 
 

Needs for a Practical “Air Capture” Process:  



3.   Adsorbent and process design that allows for rapid  

      adsorption/desorption rates (kinetics) 

 - need to remove massive amounts of CO2. 

 

Needs for a Practical “Air Capture” Process:  
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Time (hrs) 

-- rapid initial uptake  

    to 70+% total capacity 

    = “working capacity” 

 

-- lab conditions,  

    equilibrium, ~ 1 day 

    working capacity, ~1.5 h 

 

-- practical conditions, 

    gas velocity 2-5 m/s 

    working capacity, ~0.5 h 

 Monolith contactor yields good kinetics 



4. Low cost source of energy for adsorbent regeneration by temperature-

swing;  Adsorption is exothermic, desorption is endothermic 
 

 Amine adsorption occurs at ambient temperatures (0-35 ˚ C)  

 

 Only low grade heat for regeneration (80-110 ˚ C) = waste heat. 
 

 Steam-stripping gives pure CO2 upon compression =  highly efficient 

 

 

 

 
 

 

 Low grade waste heat from: 

(i) Manufacturing processes 

(ii) Solar-thermal heating      =        minimal costs in short term 

Needs for a Practical “Air Capture” Process:  

steam 
Adsorbent 

 

CO2 

 

Steam 



Needs for a Practical “Air Capture” Process:  

Steam/CO2 

Compress 
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(i) Manufacturing processes 
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5.    Acceptable capital costs and ultra-long process/material lifetime 

 - sorbent degradation and lifetime is a critical element. 

 

 Capital costs significant,  

     installations big 

     (0.01 m2 / tonne CO2-yr) 

 

 Capital costs for large scale  

     equipment can be estimated. 

 

 Largest cost unknown =  

     lifetime of adsorption media. 

 

   -- studies underway Georgia Tech and elsewhere 

 

   -- amine degradation (thermal, oxidative) 

   -- sorbent blocking (dust, sand, etc.) 

 

Needs for a Practical “Air Capture” Process:  



Practical “Air Capture” Processes:  

Global Thermostat, NY/Palo Alto, Georgia Tech - designed sorbents in a 

pilot-scale air capture process, http://globalthermostat.com/ 

 -- Peter Eisenberger, Graciela Chichilnisky 

 

Three other significant efforts also underway: 

 

Carbon Engineering, Calgary; http://www.carbonengineering.com/ 

 -- basic liquid solutions (absorption) 

 -- David Keith 

 

Kilimanjaro Energy, NY/SF; http://www.kilimanjaroenergy.com/  

 -- humidity swing with ammonium resins  (absorption/adsorption) 

 -- Klaus Lackner 

 

Climeworks, Zurich; http://www.climeworks.com/ 

 -- adsorption with amines (alternate gas contactor and  

                        regeneration methods from Global) 
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Technical, Political and Societal Challenges:  

 Technically, air capture is feasible. 

 

 If power comes from fossil energy, is there net CO2 removal from the 

atmosphere? 

 

 -- first generation NaOH process (American Physical Society  

     study), perhaps not 

  

 -- for monolith/amine/steam-stripping design, energy needs are  

    very promising: 

 

  -- low T process/waste heat = 80% of energy 

  -- electrical energy (draft fans) = 20% of energy 

 

  -- if steam from waste heat / solar thermal (natural gas),  

     1 CO2 released for every 20 (2) CO2 captured. 

  

Kulkarni and Sholl, Ind. Eng. Chem. Res. 2012, 51, 8631. 



Technical, Political and Societal Challenges:  

 Technically, air capture is feasible.  Net CO2 removal from atmosphere. 

 

 

 Economics are not well-established.  Estimates vary widely: 
 

 -- No published economic estimates exist from the core  

    businesses themselves. 

 

 -- Public, 3rd party cost estimates: ca. $100 - $1000+ / ton CO2 

 

  

 Long-term pilot data are needed to allow for accurate projections of 

     capital and operating costs 

 

                     How do we get these data? 

 

 



Technical, Political and Societal Challenges:  

 Funding challenges: 

 

 -- total federal funding for traditional CCS1:  $6B+ 

 

 -- total federal funding for air capture: <$300K (20,000x) 

 

 -- thus, essentially all investment is private. 

 

 Private investment requires a profit motive. 

 

 -- greenhouses/algae farms (small scale, small payoff /  

    significant risk, long time horizon) 

 

 -- CO2 as carbon source for fuels/chemicals 

    (fuel = VERY long term, chemicals = VERY small scale) 

1. CRS Report for Congress, Carbon Capture and Sequestration: Research, 

Development, and Demonstration at the U.S. Department of Energy, April, 2012. 



Technical, Political and Societal Challenges:  

 Private investment requires a profit motive. 

      

     -- enhanced oil recovery (EOR) 

 

     -- inject compressed CO2 to allow 

        for removal of additional oil 

 

     -- initial demonstration projects  

        likely here (in parallel with  

        traditional CCS) 

 

     -- may cause a fundamental shift in air capture proponents and  

        detractors 
 

Climate protection (original intent of technology)  = environmentalists 

 

Oil extraction (most-likely demonstration mode) = fossil energy interests 

 

  



Technical, Political and Societal Challenges:  

Path forward for air capture: 

 

Short term (2012-2015) 

1. Operate pilot processes; obtain data needed for accurate cost 

projections – private financing 

 

2. Implement processes, likely for EOR, generating additional 

anthropogenic CO2 

 

3. Use experience to move along learning curve, refine process, reduce 

costs 

 

Medium term (2020+) 

4.    Couple with conventional CCS to reduce CO2 emissions and possibly   

       remove CO2 from atmosphere on a large scale. 

 

 

 

 



Summary:  

 Direct capture of CO2 from air is technically feasible. 

 

 Very early in technology development = major advances still 

possible/probable. 

 

 Long-term sorbent stability is key to clarifying economics. 

 

 Lack of federal investment, initial implementations likely for EOR 

– will actually produce MORE CO2. 

 

 Medium term: implementation along with traditional CCS for 

climate change mitigation. 
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Q & A 

 

 



Why Not On-Board CO2 Capture from Cars? 

Two Cars:  2012 Cadillac CTS-V Wagon        2013 Chevrolet Cruze Eco 

 

MPG:      19 mpg    42 mpg 

 

Curb Weight:     4396 lbs    3011 lbs 

 

Fuel:       18 gal     (gasoline w/10% ethanol) 12.6 gal 

 

CO2/tank:       318 lbs      223 lbs 

 

Large capacity sorbent (CaO):       0.79 lbs CO2 / lb sorbent            

 

Sorbent 

required*:             402 lbs sorbent                  282 lbs sorbent 

         9% wt. car              9% wt. car 

      

 

                     * if sorbent “canister“ changed at every fill-up 



Land Area for Air Capture 

 One commercial GT unit captures 2000 ton / yr and covers an area of 

5 m x 2 m. 

 

 Increase by a factor of two for additional piping, etc.:    

 0.01 m2 / ton – yr            large coal plant (50K ton/day) = 0.18 km2 

 

 Installation would be long and thin: 

Global Thermostat 
Carbon Engineering 



Literature Review: 

Chemisorbants 

-High Hads 

-Steep isotherm 

-Strong binding 

 

-- amines 

-- CaO 

--hydrotalcites 

 

Physisorbants 

-Low Hads 

-Shallow isotherm 

-Weak binding 

 

--zeolites 

--carbons 

 

 

• Choi et al. ChemSusChem 2009, 2, 796.  



CO2 Capture with Amines: 

Reaction scheme for carbamate 

formation by reaction of CO2 

with primary or secondary 

amines. 

Mechanism for the 

reaction of CO2 with 

tertiary amines, forming 

bicarbonate. 

-- capture with primary or   

   secondary amines: 

   wet – 1:1 N:CO2 possible 

   dry – 2:1 N:CO2 possible 

-- capture with tertiary amines: 

   wet – 1:1 N:CO2 possible 

   dry – does not occur 



• Economic viability of large scale air capture still under evaluation.  

     Depends on application: environmental protection vs. CO2 utilization.  
 

• American Physical Society study concluded air capture is too 

expensive for environmental protection applications, but report only 

considers one (poorly designed) process. 
 

 
 

 

Air Capture Conclusions:  

http://www.aps.org/policy/reports/popa-

reports/loader.cfm?csModule=security/getfile&PageID=244407 

The Greening of 

Industrial Ecosystems 

(1994)  

National Academy of 

Engineering (NAE) 

 

 

http://www.nap.edu/catalog.php?record_id=2129
http://www.nap.edu/catalog.php?record_id=2129
http://www.nae.edu/


Effect of Amine Type - Air Capture: 

Primary 

Secondary 

Tertiary 

T 
400 ppm 

Can supported amine materials be effective “air capture” sorbents? 

      Yes!  If based on primary amines. 



Effect of Amine Type - Air Capture: 

T 
400 ppm 

PCO2 (bar) 

Amine efficiency 

(mmol CO2/mmol N) 

Primary Secondary 

1.1 x10-4 0.25 0.04 

2.2 x10-4 0.27 0.05 

4 x10-4 0.29 0.07 

0.005 0.37 0.17 

0.01 0.4 0.19 

0.1 0.46 0.29 

Amine Efficiency  

at 25 °C 

Amine Type 

-ΔHads 

(kJ/mol) 

Primary 72 

Secondary 56 

Heat of adsorption:  

Toth isotherm fit 

Competitive Amine Efficiencies 



Amine Adsorbents Stability to Oxidation: 

• Measure CO2 capacity 

• Exposure to 100% O2 for 24 hr. 

• Measure CO2 capacity again 

-- all sorbents oxidation resistant  

    below ca. 80 ˚C 

 

-- primary aminopropyl groups  

   (primary amines are best for air  

   capture) stable at all temperatures! 



• Air capture may allow for feeding CO2 to biomass for biofuel production 

(low concentration) or eventually, CO2 production for sale or 

sequestration. 

 
 

 

 

Air Capture Conclusions:  

 Algae-based Biofuels: 

  -- algae use CO2 as a nutrient via photosynthesis 

  -- algae are being engineered to produce hydrocarbons suitable  

     for Diesel fuel use as well as ethanol.  

Photo from Popular Mechanics: 

http://www.popularmechanics.com/ 

science/earth/4213775.html 



The Bruce Mansfield Power Plant: 

• 2360 MW electric power 

generation capacity. 

 

• 7 million tons coal 

burned/year. 

 

• ~41% efficiency. 

 

• 17.5 million tonnes CO2 

generated per year. 

 

• 47,800 tonnes/day CO2 

formed (at ~15% vol 

concentration). 

 

• 220,000 tonnes flue gas 

processed per day. 

 

• The yearly output fits in a 400m cube 

at sequestration pressures (140 atm). 

 

Slide courtesy of Prof. John Kitchin,  

     Carnegie Mellon University. 



Post-Combustion Capture Conditions Separation of CO2: 

• Flue gas composition after sulfur scrubbing 

– 13-16% CO2  

– 4-5% O2   

– 6-7% H2O 

– Minor impurities 

– Balance N2  

• Flue gas conditions  

– 60-80°C 

– 10-15 psi 

• Flue gas production rate 

– A 2500 MW coal plant produces ~550 kg CO2/s 

– ~240,000 tons/day of flue gas must be treated 

• Capture goal 

– 1200-2000 psi, dry CO2 for pipeline ready transport 



Point Source Capture vs. “Air Capture”: 

CO2 Source Properties: Air/Point Source Exhaust 

      Property           Air                Flue 

   Amount of CO2       3 teratonnes 20 gigatonnes/yr 

      Distribution      400 ppm - “infinite” 

mostly uniform source   

5-15% point sources 

10% - 250x more conc. vs. air 

     Temperature          10-30 °C 45-65 °C 

    

    Contaminants       Low levels of  

      contaminants             

   High levels of SOx  

   NOx , particulates              

     Movement        wind, fans fans 



Technical, Political and Societal Challenges:  

 Technically, air capture is feasible.  Net CO2 removal from atmosphere. 
 

 Economics are not well-established.  Estimates vary widely: 
 

 -- American Physical Society report:  http://www.aps.org 
 

  -- studied first generation process (known not to work) 

  -- estimated cost, $600/ton CO2 
   

 -- House et al. Proc. Nat. Acad. Sci. 2011, 108, 20428. 
 

  -- estimate air capture costs by extrapolating costs of other 

     trace component purification processes. 

  -- >$1000/ton CO2 
  

 -- Kulkarni and Sholl, Ind. Eng. Chem. Res. 2012, 51, 8631. 
 

  -- estimated air capture operating costs for amine-monolith- 

      steam process 

     -- ca. $100/ton CO2, depending on location 

 


