

Nanoparticle aerosols in workplace environments

Martin Seipenbusch, KIT, Institute for Mechanical Process Engineering and Mechanics

Outline

Introduction

- Sources for Nanoparticles in Workplaces
- Changes in Particle characteristics: Aerosol dynamics in workplace atmospheres
- Effect of particle size on deposition efficiency in the lung and protective equipment

Introduction

Strikute of Technology

Particulate nanostructures: Application areas (examples):

Energy (Solar cells, fuel cells, catalysts e.g. for hydrogen generation)

Mobility (tires, Exhaust catalysts, battery technologies etc.)

Medicine (antimicrobial coatings, improved biocompatibility of implants)

Food industry (thickening and flowability agents)

Production of Nanoparticles by aerosol processes

- Flame pyrolysis: mass production of comodities (soot, titania, silica, alumina)
- Flame spray pyrolysis
- Plasma processes
- Laser based processes

Workplace Exposure with Nanoparticle aerosols

bed

2003

70 m² of

alveolar

surface

Ingestion

Inhalation

Bronchi

Nonrespiratory bronchioles

> Respiratory bronchioles

Alveolar ducts

Alveolar

sacs

Skin penetration

Nasal airway

Pharynx

Trachea

Sources for nanoparticle aerosols in workplaces

Nanoparticle release from industrial processes

bagging, handling and processing:

Small scale production:

Workplace measurements for CNT and Silicon-NP: negligible increase in number- and mass concentration (Maynard et al. Tox Envir. Health 2004; Wang et al. J. Nanopart. Res. 2011)

Mass production:

Bagging of soot: particle mass <10µm (PM₁₀) concentration increased (Kuhlbusch et al. Occ. Envir. Hyg. 2004)

(Maynard et al. Tox Envir. Health 2004)

Nanoparticle release from the use of NP containing products

Sanding and grinding of nanoparticle containing products: release of matrix-bound NP in the µm-range

Göhler et al. Ann. Occ. Hyg. 2010

Release of nanoparticles from an open flame reactor

Release of submicron particles

Changes in Particle characteristics: Aerosol dynamics in workplace atmospheres

Temporal evolution of a Nanoparticle aerosol

Aerosol dynamics: key mechanisms

Loss mechanisms: size dependence

Kinetics of the dominant mechanisms

Polydisperse Coagulation: NP aerosol interacting with a simulated background aerosol

Karlsruhe Institute

Mobility Particle Diameter / nm

Particle number distributions at steady state (experiment)

Seipenbusch et al. Ann. Occ Hyg. 2009

Particle size and deposition in the lung and protective equipment

18

Particle deposition in the human airways

Aerodynamic behavior decides whether and where particle deposition takes place

(after Bailey Rad. Prot. Dos. 1994)

Deposition of aerosol particles in filters

Calculated separation efficiency for various face velocities

Filter efficiency in the nano-regime

Testing of filtration efficiency on model filters:

Tests on real filters:

Filter efficiency for non-spherical particles

- interception dominates deposition of agglomerates and fibers
- Improved deposition for non-spherical particles

Summary

- Sources for Nanoparticles in Workplaces:
 - Most cases: release of highly agglomerated particles
 - For some scenarios free nanoparticles can be found
- Aerosol dynamics in workplace atmospheres:
 - Reduction in number concentration and increase of particle size by several mechanisms, depending on conditions (relevant size range 100-500 nm)
- Effect of particle size on deposition efficiency in the lung and protective equipment:
 - Deposition efficiency in the lung highly dependent on particle size. Alveolar deposition between 1-100 nm
 - Efficiency of protective equipment very high in the nanoregime. MPPS ca. 200 nm