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* The highest science return is
often in very challenging terrain
for landing.

« Current landing systems cannot
access these sites because of
the high risk
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Recent NASA Mars Surface Vehicles
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Development Challenges for MSL
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Safe and Precise Landing

CTX image on DEM from L. Edwards and K. Edgett
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Two Landing Problems to Solve

Terrain Relative Navigation (TRN) Hazard Detection (HD)

» Avoids known large hazards seen * Avoids unknown small hazards
from orbit through on-board map (rocks, scarps) through on-board
relative position estimation terrain mapping during landing

» Allows selection of landing ellipses » Allows selection of landing ellipses
with large hazards (e.g., hills, with a large number of small hazards
craters) (e.g., rock fields)  gm,

Ianding\site using TRN

nominal flight path =~ -®@ nominal landing site safe site
from HD nominal site
25km x 20km landing ellipse local terrain around touch down
TRN and HD

« are complimentary and use different technology
* increase number of selectable landing sites
» reduce mechanical complexity of the landing system



Terrain Relative Navigation (TRN)

TRN Algorithms
Terrain relative navigation (1) Features tracked in (2) landmarks matched to

combines inertial descent imagery ‘\\\f\\\\\ B referece
measurements with :
(1) landmark matches
between a descent image
and a reference map and

(2) features tracks through a
stream of images to estimate
map relative position attitude

and velocity. TRN
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Landing Hazard Detection (HD)

MSL Hazard Constraints

HD builds an elevation map from on-board lidar
data, computes a safety probability across the map
and directs the lander to target the safest reachable
Iandmg site ' L "% peliySiepe < 22

o

g 4 W Belly Rocks'< 55cm

HD Components $ Wheel Rocks < 60cm

— HD lidar generatesan ©
elevation map from one
image
— HD algorithm identifies =
safe sites free of rocks and A
slopes

Flash Lidar
]

HD Algorithm
Collect Lidar points Generate DEM Safety Map



Large Divert Guidance (LDG)

 Large divert guidance computes the fuel optimal
trajectory to a target kilometers away while satisfying
constraints on off nadir attitude and altitude.

* On-board algorithm enables pinpoint landing or large
hazard avoidance.
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Parachute Phase Terrain Relative

Navigation
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Monte Carlo runs
over all trajectories,
terrain, atmosphere

Simulation

Closed-

Loop
Powered
Descent Flight software
e Testbed A e
_Realdynamics Closed loop Interfaces
.. Real sensor data performance Eli ght "
Field test Hardware
Testbed

vehicle and movie from Masten Aerospace



Fast Rover Traverse




Rover Hazard Avoidance (AutoNav)

Stereo vision based hazard

avoidance (Autonav) enables

autonomous rover traverse in

rough and/or unknown terrain

« Over the horizon driving

« Navigating in rock field with
rover slip

Mark Maimone



Rover Visual
Odometry (VO)

LEFT © RIGHT ¢

Mittiﬁﬁ Y 3D Points &
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Motion

Motion
Tracking Estimation
" ~, A
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Visual Odometry enables precise position
estimates even when the rover slips

* navigation in complicated terrain

« check on rover slip to prevent digging
rover into hole




Faster Driving Is Safer and More Energy Efficient

MSL Driving

thinking
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Power (W)

Data Prod. Gen.

Traversability
Visual Odom.

_Path Selection

 The MSL rover drives slowly and must stop
to process imagery.

150}

« If VO &Autonav are “always on” driving is:

 Faster: Eliminate the need for the rover
to stop and ‘think’
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. Safer.: AutoNe}v hazard avoidance and - Projected MRR (MER with RAD750)
VO S|Ip CheCklng -l-Proposed Always-On \
.. .. == Blind
« More Efficient: Eliminate energy e
. Ll s . , Traverse Distance (m)
wasted while ‘thinking

Mike McHenry
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Open Questions

 Technology adds risk to a mission

— What methods do you use to promote technology
in the face of this risk?

— Are there risk categories?
— Can the risks be quantified?
« Technology must be validated before use
— Do you cover the entire operational/usage envelop?
— What methods do you use (e.g., sim, field testing)?
— What is the right mix of methods?
— How do the methods cross check each other?
— When is there sufficient validation (cost versus risk)?
« Human vs Machine
— What is the right balance between autonomy and human control?
— How do we prove a fully autonomous spacecraft will do what we want?
— Do we have to prove this before flying one?



