### Autonomous Robotic Systems for Mars Exploration

Dr. Andrew E. Johnson Jet Propulsion Laboratory California Institute of Technology

#### Science versus Safety

- The highest science return is often in very challenging terrain for landing.
- Current landing systems cannot access these sites because of the high risk





#### **Recent NASA Mars Surface Vehicles**



#### **Development Challenges for MSL**

land somewhere in this ellipse

MSL Baseline Mission Land somewhere flat and smooth and then drive kilometers to most interesting science

#### <u>2 km</u>

1 cm/pxl Limit MER Pancam MSL Mastcam 100s of days driving

then drive to here

Gale Crater

#### **Technology Beyond MSL**

- Landing accurately in rough terrain
- Fast and safer driving

Land here and decrease driving time to a few days

#### <u>2 km</u>



... or land here

#### Safe and Precise Landing



## Two Landing Problems to Solve

#### **Terrain Relative Navigation (TRN)**

- Avoids known large hazards seen from orbit through on-board map relative position estimation
- Allows selection of landing ellipses with large hazards (e.g., hills, craters)



#### Hazard Detection (HD)

- Avoids unknown small hazards (rocks, scarps) through on-board terrain mapping during landing
- Allows selection of landing ellipses with a large number of small hazards
  (e.g. rock fields)



local terrain around touch down

#### TRN and HD

- are complimentary and use different technology
- increase number of selectable landing sites
- reduce mechanical complexity of the landing system

### **Terrain Relative Navigation (TRN)**

Terrain relative navigation combines inertial measurements with (1) landmark matches between a descent image and a reference map and (2) features tracks through a stream of images to estimate map relative position attitude and velocity.

camera

surement

nertial

Uni

**SRAM Memory** 

#### **TRN Algorithms** (1) Features tracked in (2) landmarks matched to descent imagery reference map TRN enables pin-point landing **3D** map locations Single board Sounding Rocket TRN Test Results processor card Position Error expressed in NED coordinates Processor 10 E × **FPGA**

\_10⊡ 300

250

200

150

Altitude (m)

100

50

#### **TRN Hardware**

### Landing Hazard Detection (HD)

57

HD builds an elevation map from on-board lidar data, computes a safety probability across the map and directs the lander to target the safest reachable landing site

0

0

 $\Box$ 

**HD** Components

- HD lidar generates an elevation map from one image
- HD algorithm identifies safe sites free of rocks and slopes

**HD** Algorithm





D

Safety Map







elevation map



# Large Divert Guidance (LDG)

- Large divert guidance computes the fuel optimal trajectory to a target kilometers away while satisfying constraints on off nadir attitude and altitude.
- On-board algorithm enables pinpoint landing or large hazard avoidance.





**Behcet Acikmese** 

### **Closed Loop Testing for Landing**



#### Fast Rover Traverse



### Rover Hazard Avoidance (AutoNav)

Stereo vision based hazard avoidance (Autonav) enables autonomous rover traverse in rough and/or unknown terrain

- Over the horizon driving
- Navigating in rock field with rover slip





**Elevation map** 

## Rover Visual Odometry (VO)



Visual Odometry enables precise position estimates even when the rover slips

- navigation in complicated terrain
- check on rover slip to prevent digging rover into hole





#### Faster Driving is Safer and More Energy Efficient



- The MSL rover drives slowly and must stop to process imagery.
- If VO &Autonav are "always on" driving is:
  - Faster: Eliminate the need for the rover to stop and 'think'
  - Safer: AutoNav hazard avoidance and VO slip checking
  - More Efficient: Eliminate energy wasted while 'thinking'



Mike McHenry

R&TD POWER EFFICIENT FAST TRAVERSE AUTONOMOUS NAVIGATION WITH FPGA STEREO AND VO

JET PROPULSION LABORATORY SEPTEMBER 28, 2011 8X REAL-TIME



### **Open Questions**

- Technology adds risk to a mission
  - What methods do you use to promote technology in the face of this risk?
  - Are there risk categories?
  - Can the risks be quantified?
- Technology must be validated before use
  - Do you cover the entire operational/usage envelop?
  - What methods do you use (e.g., sim, field testing)?
  - What is the right mix of methods?
  - How do the methods cross check each other?
  - When is there sufficient validation (cost versus risk)?
- Human vs Machine
  - What is the right balance between autonomy and human control?
  - How do we prove a fully autonomous spacecraft will do what we want?
  - Do we have to prove this before flying one?