Design and Evaluation of Adaptive Traffic Control System for Heterogeneous flow conditions

Tom Mathew

IIT Bombay

Outline

- 1. Heterogeneous traffic
- 2. Traffic Simulation
- 3. Traffic Signal control
- 4. Adaptive traffic control
- 5. Conclusion

- Homogeneous traffic
 Single vehicle type
- Lane-based Movement
 Follow a single leader
 Well defined surrounding vehicle

- Mixed vehicle type
 - Static characteristics
 - Dynamic characteristics
- Non-lane-based
 - Who is my leader?
 - What are my surrounding vehicle?

Intersection

- Seepage
- Maneuverability
- Stop-line
- Lane-changing

Vehicle type dependant car-following

Effect of vehicle type on car-following

Effect of vehicle type on lane-changing

- Modeling needs
 - Address mixed vehicle type
 - Model non-lane based movement

Outline

- 1. Heterogeneous traffic
- 2. Traffic Simulation
- 3. Traffic Signal control
- 4. Adaptive traffic control
- 5. Conclusion

Strips for non-lane based modelling

- Longitudinal movement Lateral movement
 - Continuous
 - Modified car-following

- - Discrete
 - Strip changes

Strips for non-lane based modelling

- Vehicle-following model
 - Who is my leader?
- Lateral movement model
 - Which strip should I occupy

Implementation of strips

Simulation of Urban Mobility (SUMO)

3

Implementation of strips

Outline

- 1. Heterogeneous traffic
- 2. Traffic Simulation
- 3. Traffic Signal control
- 4. Adaptive traffic control
- 5. Conclusion

Vehicle Actuated Control

Area traffic control – Traffic responsive

Area traffic control – Adaptive to Traffic

- Two Popular Network Systems
 - Centralized system
 - SCOOT
 - □ Split, Cycle, Offset, Optimization
 - Distributed system
 - SCAT
 - Sydney Coordinated Adaptive Traffic System

SCOOT system

- Working philosophy
 - Upstream detection
 - Data communicated to central controller
 - It computes the timing and send to intersections
- Limitations
 - Communication overheads
 - Poor progression prediction
 - Calibration issues

SCATS system

- Working philosophy
 - Downstream detection
 - Local controller acts akin to a VA controller
 - Communicate periodically to the central controller
- Limitations
 - Not an optimal system

SCOOT vs. SCAT

SCOOT

- Centralized System
- Upstream detection
- Fixed traffic regions
- Fallback fixed
- Model based

SCAT

- Distributed system
- Stop line detection
- Adjustable region
- Fallback VA
- Algorithmic

- Requirement
 - Distributed system
 - Stop line detection
 - Adjustable region
 - □ Fallback VA
 - Model based

Outline

- 1. Heterogeneous traffic
- 2. Traffic Simulation
- 3. Traffic Signal control
- 4. Adaptive traffic control
- 5. Conclusion

Detector placement

Basic Algorithm

for every phase set green equals queue service time for every scan time get detector state for each lane-group compute gap if gap greater than threshold terminate green else increment green time limit green to max green time if green greater than max green terminate green

Working principle

Neuro-Fuzzy model – Estimate Gmax

Evaluation using traffic simulator

Results

Volume	Control	Delay	Queue
Low	NF	15	6
(V/C 0.3-0.5)	VA	17	6
	Fixed	20	8
Medium	NF	20	11
(V/C 0.5-0.8)	VA	23	14
	Fixed	28	20
High (V/C 0.8-1.2)	NF	44	66
	VA	53	93
	Fixed	67	129

Outline

- 1. Heterogeneous traffic
- 2. Traffic Simulation
- 3. Traffic Signal control
- 4. Adaptive traffic control
- 5. Conclusion

Conclusion

- Heterogeneous traffic
 - Mixed vehicle type
 - Non-lane based movement
- Strip based simulator
 - Compatible to homogeneous traffic
 - Ability to handle complex driving behavior
- Adaptive control
 - Sensitive to fluctuating traffic demand
 - Evaluation by traffic simulators
 - Optimal use of infrastructure
 - Enhances service quality

Conclusion - Challenges

- Heterogeneous traffic
 Complex geometry
- Strip based simulator
 - Better behavioral models
 - Integrated driving models
 - Bike's/Auto movement
- Adaptive control
 - Developing for large systems
 - Optimal control
 - Traffic management capabilities

Thank You

tvm@civil.iitb.ac.in