Connected Vehicle Research in the United States

Indo-American Frontiers of Engineering Symposium

March 1-3, 2012

Ben McKeever FHWA Office of Operations R&D, U.S. DOT

Connected Vehicle Concept

Drivers/Operators

What is the Connected Vehicle Program?

- Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications for:
 - Crash prevention
 - Improved mobility
 - Environmental sustainability
- Connected vehicle capability addresses over 80% of unimpaired crash scenarios
- Encompasses autos, buses, and trucks
 - Partnership among RITA, NHTSA, FHWA, FMCSA, and FTA

What is the Connected Vehicle Program (cont.)

 Uses Dedicated Short-range Communications (DSRC) technology

- $_{\circ}$ FCC-dedicated spectrum at 5.9 GHz
- Low latency and high reliability essential for safety applications
- Other communications types being considered for non-safety applications (e.g. cellular, Wi-Fi)

Key Program Objectives

- 2013 NHTSA Decision on Vehicle Communications for Safety (light vehicles)
- 2014 NHTSA Decision on Vehicle Communications for Safety (heavy vehicles)
- 2015 FHWA to issue Infrastructure Implementation Guidance

- Possible decision options include:
 - Rulemaking on minimum performance requirements for vehicle communications for safety on new vehicles
 - Inclusion in NHTSA's New Car Assessment
 Program to give car makers credit for voluntary inclusion of safety capability in new vehicles
 - More research required

NHTSA Agency Decision (cont.)

- NHTSA's action for the 2013 decision will be based on hard data:
 - Simulation and modeling efforts based upon previous field operational tests
 - Data collection from V2V test track testing
 - Empirical data obtained from Safety Pilot
 - Driver clinics (user acceptance)
 - Model deployment activities (safety effectiveness)

ITS Research Program Components

Applications

Safety		Mobility		Environment		
V2V	V2I	Safety Pilot	Real Time Data Capture & Management	Dynamic Mobility Applications	AERIS	Road Weather Applications

Technology

Harmonization of International Standards & Architecture

Human Factors

Systems Engineering

Certification

Test Environments

Deployment Scenarios

Financing & Investment Models

Operations & Governance

Institutional Issues

Safety Pilot Objectives

- Generate empirical data for supporting 2013 and 2014 decisions
- Show capability of V2V and V2I applications in a real-world operating environment using multiple vehicle types
- Determine driver acceptance of vehiclebased safety warning systems
- Assess options for accelerating the safety benefits through aftermarket and retrofit safety devices
- Extend the performance testing of the DSRC technology

Safety Pilot Sites

Driver clinics

Assess user acceptance

Large-scale model deployment

 Obtain empirical safety data for estimating safety benefits

Six Driver Clinic Sites

User Acceptance -- Driver Clinics

- 6 locations across the U.S. beginning in August 2011
- 100 drivers per location
- Experience crash warnings
 - Forward Crash Warning
 - Emergency Brake Light
 - Blind Spot Warning
 - Lane Change Warning
 - Intersection Assist
 - Do Not Pass Warning

Model Deployment

- Major road test and real-world implementation in2012-2013, involving:
 - Approximately 3,000 vehicles
 - Multiple vehicle types
 - Fully integrated systems and aftermarket devices
 - Roadside infrastructure
 - System-wide interoperability testing
- Also to test
 - Prototype security mechanisms
 - Device certification processes

Integrated Vehicles

Integrated Trucks

Aftermarket Devices

Devices

Roadside Infrastructure

Roadside Equipment for Safety Pilot

- Transmission and receipt of V2I messages
 - Interfaces with signal controller (at intersections)
 - Supports other dangerous
 road segment applications
- Applications supported
 - CICAS-V (red-light warning)
 - Curve overspeed warning
 - Collection of probe data transmissions
 - Other (tbd)
- 4 vendors currently developing RSE prototypes

Test Environments - Build a Reference Implementation

CA

Status:

Test beds with interoperable equipment in California, Florida, New York, Michigan, and Virginia, and network operations in Tennessee

2012 to 2013

- Reflect the system architecture
- Utilize harmonized international standards
- Implement a certification process
- Implement a security process

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)

Policy Research Focus

- Security Needs and Privacy
- Deployment Scenarios/Business Models
- Governance

Critical Security Questions

- Which communications media can support the needs for distributing security certificates? Choices include:
 - Dedicated Short Range Communications (DSRC) may require up to 40,000 RSEs
 - Existing Cellular Networks or Wi-Fi infrastructure exists but must address privacy
 - Vehicle-Based Security Option (no infrastructure)
- What are advantages and limitations of each?
- How should the organizational functions of security certificate distribution and management be structured?
 - Who should be responsible for them
 - How should they be funded initially and over time?

- Requires infrastructure, could be implemented at spot locations:
 - Intersections (tied into traffic signals)
 - Curves
- Enabling Technologies
 - Signal Phase and Timing
 - Positioning
 - Communications
 - Mapping
- Applications
 - Intersection safety (e.g. red light warning)
 - Speed warnings at curves, school zones, or works zones
 - Pedestrian Safety

Mobility Program

18

AERIS Program

- <u>Applications for the Environment: Real-time Information</u>
 <u>Synthesis</u>
- Identified Transformative Applications
 - Eco-Signals
 - Eco-Lanes
 - Low Emissions Zones
 - Support for Alternative Fuel Vehicle operations
 - Eco-Traveler Information
- Planning a public workshop March 14-15 in Washington, DC to further discuss data and other requirements for Apps
 - Registration information and draft agenda to be developed and circulated soon

For More Information

www.ITS.DOT.GOV

Ben McKeever Team Leader FHWA, Office of Operations R&D Ben.McKeever@dot.gov