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Delivery of Therapeutic Molecules to
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Drug delivery using Albumin
Nanoparticles

Paclitaxel is a small molecule mitotic inhibitor that used for treating different cancers. Its poor
water solubility and toxicity to normal tissues however, had resulted in poor bioavailability and
major side effects

Transmission Electron
Micrograph

Albumin
shell

Paclitaxel

Journal of Controlled Release, 2012

By conjugating paclitaxel containing nanoparticles to human serum albumin. It is more
water soluble and more efficiently transported to tumor cells through albumin-
mediated transcytosis. The resulting formulation (Abraxane®) is significantly more
effective compared to paclitaxel itself.



Protein-based Therapeutics

® Advantages ® Approved Protein Therapeutics
- Specificity - Diabetes (Insulin: Humulin, Novolin, Symlin...)
- Biocompatibility - Cancer (Herceptin, ELSPAR, Avastin, Vectibix...)
- High potency - Cardiovascular (Natrecor, Angiomax, Retavase...)
- Unique in form and function - Immunoregulation (Adagen, Infergen, Intron A...)

- Growth regulation (Sandostatin, Kepivance...)
...~$77 billion in 2010
Nearly all current protein therapeutics act on extracellular targets

Intracellular Protein Delivery Opportunities

 Potential Applications
— Catalyze intracellular reactions
— Restore loss-of-function genetic conditions
— Maintain normal cellular life cycles
— Artificial control of gene expression levels
— Imaging
— Vaccination

Protein delivery adds functions to cells without modifications to the host genome

B. Leader, Q. J. Baca, D. E. Golan, Nat Rev Drug Discov, 7, 21, 2008.



Intracellular Protein Delivery

Challenges Nanocarriers
Extracellular Challenges e 2
@ mitochondria th nanocarrier
Intrinsically unstable J U © @
(aggregation/denaturation) ;en‘fj&g'grg;\ $o
Prone to proteolysis SOC08 '\f o) ©
Rapid clearance of small proteins nucleus  =-9__ 952 4, Re ¢/ endosome
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Elimination by immune system ® endolysosome

Targeting specific cells

Surface charge (negative) Increase protein stability

Increase circulation time

lysosome

Escape from delivery vehicles Concealing immunogenic epitopes
Release into cytosol Allow surface modification
Maintain structure and function Tailor carrier surface charge

Many of the delivery challenges can be addressed using nanocarriers

Choice and design of vehicle is crucial




Nanocarriers for Intracellular Delivery
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Encapsulation

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol., 2, 751, 2007.
Z. Gu, A. Biswas, M. Zhao, Y. Tang, Chem. Soc. Rev.., 2011.



Engineering Protein Nanocapsule

Outline of the Different Generations of Nanocapsules Designed in Our Lab
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Single-Protein Based Nanocapsules

M. Yan, et al Nat. Nanotechnol., 5 2010.
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Degradable Nanocapsules

Degradation in the cytosol
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Shown here is the delivery of a protein that can cause apoptosis in cells.



Endoprotease-degradable Nanocapsules

For cytosolic delivery, the actions of intracellular proteases can be explored

Furin-pP roprotei n convertase Richards et al, PNAS. 2002
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Furin-mediated cleavage of papillomaviruses is necessary for

MIHRIGETITE B HRESSINat A DESGLION PHOCCSSES 4 IOt Italbiel
Natural role of furin facilitated release of foreign cargo.

Biswas et al, ACS Nano. 2011 Anuradha Biswas

/

i 4 E




Furin-Mediated Release of Protein Cargo

Before adding 10 hr after adding furin
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Strategy for Chemo-Degradation
The difference in the redox environment

o) O
between extracellular (oxidizing) and intracellular {8 i 4
(reducing) can also be explored for degradation |
of the polymeric shell.

SH SH
HS gmsu
The high intracellular concentrations of Hs~G 7/; o AS—
glutathione (GSH) can rapidly trigger reduction of SH 7\;"3 Q{;H <:| :
disulfide (S-S) crosslinked matrices. Y

>
Engbersen and coworkers, Bioconjug. Chem. 2007

Redox-Responsive Nanocapsules

Before GSH Treatment After GSH Treatment
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Redox-Responsive Nanocapsules

Time course of GSH-mediated degradation S-S eGFP NC Trafficking in Hela
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Application: Apoptin

Apoptin induces apoptosis selectively in tumor
cells, but not in normal cells

Native MBP-APO

b) -

cytoplasm

After encapsulation After degradation

Potential antitumor therapeutic if the

correct delivery vehicle can be designed.

Zhao, M. et al, submitted, 2012



NDNC S-SNC

Delivery of Apoptin to Selectively Kill Tumor Cells

Nanocapsule delivered-apoptin localization Nanocapsule can slow down tumor growth in mouse
MCEF-7 breast cancer xenografts.
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Application: Transcription Factors
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Delivery of MyoD

MyoD is one of myogenic e gm‘”‘“ s
re gulat ory factors which act g:;l)lgenitor myoblasts early myotube mature myotube
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