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Hundreds of sensors
Integrated systems approach Operable windows
Energy literate consumers Function drives form




What is the “gas mileage” of a building?
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Which can lead to catastrophe




|f covered in photovoltaics, this
would provide only ~20% of the
required energy for the John
Hancock T ower

(Source: L. Glicksman)

We must focus on
the demand sde
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Economics of Office Buildings

Over typical
lifetime of
30 years

$1

Construction Operation Salaries




Challenges

Improved tools for the conceptual design stage to
overcome gulf between professions

eLife-cycle metrics for designers, policy makers,
and public

eLack of R&D in a conservative industry




Current Structural Tools

Architectural Design

- Computational design tools are
widespread

- Emphasis on generative ability

- Lack legitimate performance
evaluation

Structural Analysis

- Computational analysis tools
are widespread

- Emphasis on sophisticated
performance predictions

- Not useful in conceptual




We have analysis tools, but we need more design tools




Some conceptual design
tools under development

Energy
— MIT Design Advisor

eStructure
— Optimally directed
— Interactive
eIntegrated systems
- DIVA




Metrics for designers and policy makers

Greater literacy needed on environmental impacts of
buildings

We have focused on global warming potential (CO.e)

eLife Cycle Assessment (LCA) provides a rigorous
approach for guantifying emissions
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The story of a can of Coke....

TR
throws away enough Pty
aluminum to replace its entire commercial “

aircraft fleet every three months.” [«

(Charles Ainger, Cambridge University)



Why Life Cycle Assessment (LCA)?

 LCA quantifies environmental impacts
e Gilves direction on areas for reductions

e Must look up and down the supply chain




Growing Use of Raw Materials
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Life Cycle Assessment (LCA) of Buildings

) [use pnace] M) [Eng o ire

Extraction
Manufacturing
Transportation
Concrete

Steel
Insulation
Glass

Heating
Cooling
Lighting
Fans

Plug loads
Maintenance
Energy Mix

Disposal
Recycling
Reuse
Transportation




Total 60-year emissions for
single-family houses
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Motivations for LCA work

Growing demand for quantifying performance of structures

2030 Challenge calls for carbon reductions of:
60% in 2010 (of average carbon emissions for building type)
70% in 2015
80% in 2020
90% in 2025
Carbon-neutral in 2030

R

ADOPTER

Top 30 Architecture / Engineering Firms
The 2030 Challenge
ource, dechelecnae 2030 1 AL | Brchitecturad Peo uly 2010




CARBON NEUTRAL
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Opportunities

eConceptual design tools are in their
Infancy

Design education can bridge gaps
between engineering and
architecture

Industry, government, academic
partnerships can overcome poor
history of R&D in construction
Industry




DESIGN TECHNOLOGIES OFF-SITE RENEWABLE

STRATEGIES AND SYSTEMS ENERGY
I'he largest energy including on-site renewable 20% maximum.
reguctions can be energy systems.

achieved through design.

Source: Architecture2030




Net-Zero: Richardsville School, KY

e Reduce demand to 30 kBtu/sft/yr
e Generate energy on site with PVs
e Many mtegrated technologles

i-um
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Net-Zero: NREL RSF, Golden, CO

e Reduce demand to 35 kBtu/sf/yr
e Generate energy on site with PVs

POWER GENERATED
Solar panels




South Africa National Parks asked for
a new visitor’s center with:

- local materials and local labor
- passive energy strategies
- poverty relief program
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Mapungubwe Visitor's Centre
Peter Rich, Architect
Henry Fagan, Engineer




Mapungubwe Visitor's Centre
Peter Rich, Architect
Henry Fagan, Engineer




Integrated design team developed low-cost soil-cement structural shells

F s




World Architecture Festival
Building of the Year, 2009

et et Archtoots. e Earth Awards Finalist, 2010




Measuring, managing, and reducing carbon
emissions will be the norm

Cost-effective carbon reductions will
transform the built environment

LCA provides rigorous bench-marking of life-

cycle building performance

New conceptual design tools and software are
sorely needed




Thank you

John Ochsendorf
Jjao@mit.edu

Mapungubwe Visitor's Centre
Peter Rich Architects
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18%
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W (ooking 5%
W Electronics & Computers 10%
!Laund?/ & Dishwashing 7%
W Refrigeration 8%
W (ooling 14%
W Lighting 12%
W Water Heating 13%
N Heating 28%
N Other 4%

1 Cooking 2%

" Refrigeration 4%
0 Flectronics & Computers 12%

" Ventilation 7%

| Water Heating 7%
W (ooling 14%
W Heating 13%

N Lighting 27%

W Other 14%

Source: US DOE, Buildings Energy Data Book, 2006




