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1. Introduction 

Statistical, or data-driven, diagrams are an important method for communicating complex 

information. For many technical documents, the diagrams may be readers’ only access to the 

raw data underlying the documents’ conclusions. 

 

Unfortunately, finding diagrams online is very difficult using current search systems. Standard 

text-based search will only retrieve the diagrams’ enclosing documents. Web image search 

engines may retrieve some diagrams, but generally work by examining textual content that 

surrounds images, thus missing out on many important signals of diagram content [3, 4]. Even 

the text that is present in diagrams has meaning that is hugely dependent on their geometric 

positioning within the diagram’s frame; a number in the caption means something quite different 

from the same number in the x-axis scale [2]. 

 

There has been growing commercial interest in making data-driven diagrams more accessible, 

with data search systems such as Zanran [11] and SpringerImages [10]. While there is a huge 

amount of research literature on search and image- related topics, diagram search per se is 

largely unexplored. 

 

In this paper we propose a Web search engine exclusively for data-driven diagrams. As with 

other Web search engines, our system allows the user to enter keywords into a text box in order 

to obtain a relevance-ranked list of objects. Our system addresses several challenges that are 

common among different search engines but which require solutions specifically tailored for 

data-driven diagrams: 
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• Diagram Corpus Extraction - Obtaining the text of a Web document is usually as easy as 

downloading and parsing an HTML file; in contrast, statistical diagrams require special 

processing to extract useful information. They are embedded in PDFs with little to distinguish 

them from surrounding text, the text embedded in a diagram is highly stylized with meaning that 

is very sensitive to the text’s precise role, and because diagrams are often an integral part of a 

highly-engineered document, they can have extensive “implicit hyperlinks” in the form of figure 

references from the body of the surrounding text. Our Diagram Extractor component attempts 

to recover all of the relevant text for a diagram and determine an appropriate semantic label 

(caption, y-axis label , etc.) for each string. 

 

Figure 1: Scaling down images works well when generating visual snippets for photos, but 

diagrams can quickly become illegible. 

• Ranking Quality - All search engines must figure out how to score an object’s relevance to a 

search query, but scoring diagrams for relevance can yield strange and surprising results. We 

use the metadata extracted from the previous step to obtain search quality that is substantially 

better than naive methods. 
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• Snippet Generation - Small summaries of the searched-for content, usually called snippets, 

allow users to quickly scan a large number of results before actually selecting one. Conventional 

search engines select regions of text from the original documents, while image search engines 

generally scale down the original image to a small thumbnail. Neither technique can be directly 

applied to data-driven diagrams. Obviously, textual techniques will not capture any visual 

elements. Figure 1 shows that image scaling is also ineffective: although photos and images 

remain legible at smaller sizes, diagrams quickly become difficult to understand. 

 

This paper describes DiagramFlyer, a search engine for finding data-driven diagrams in Web 

documents. It addresses each of the above challenges, yielding a search engine that 

successfully extracts diagram metadata in order to provide both higher-quality ranking and 

improved diagram “snippets” for fast search result scanning. 

Figure 2: The data processing pipeline.  An offline component crawls the Web for PDFs, 

extracts the statistical graphics, and constructs an inverted text index over the resulting 

extracted metadata.  This index and the diagrams are then fed to an online system that ranks 

diagrams according to users’ queries and generates query-appropriate search snippets.  The 

deep blue boxes signify research components described in this paper. 

 

The techniques we propose are general and can work across diagrams found throughout the 

Web. However, in our current testbed we concentrate on diagrams extracted from PDF files that 

were discovered and downloaded from public Web pages on academic Internet domains. Our 
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resulting corpus contains 153K PDFs and 319K diagrams.  We show that DiagramFlyer ob- 

tains a 52% improvement in search quality over naive approaches. Further, we show that 

DiagramFlyer’s hybrid snippet generator allows users to find results 33% more accurately than 

with a standard image-driven snippet.  We also place DiagramFlyer’s intellectual contributions in 

a growing body of work on domain-independent information extraction , techniques that enable 

retrieval of structured data items from unstructured documents, even when the number of topics 

(or domains) is unbounded. 

 

Figure 3: Diagram metadata labels for a sample diagram.  Some labels, such as title and 

legend, are found in different places for different graphics. 

 

2.  System Overview 

As with a traditional Web search engine, DiagramFlyer employs a pipeline of offline corpus-

processing steps that produce output then used by an online search query system. The system 

architecture is seen in Figure 2. 

 

The offline pipeline has three components: 
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1. The PDF Crawler attempts to download a large number of Web-hosted scientific papers for 

diagram search 

 

Figure 4: A screenshot of the DiagramFlyer search system. 

2. The Diagram Extractor receives the resulting stream of nearly 153K papers.  This extractor 

attempts to identify all the diagrams in the corpus and then annotate the text in each diagram 

with an appropriate semantic role. As seen in Figure 3, the Diagram Extractor identifies eight 

roles within the diagram (legend, caption, title, etc.). It also looks for any surrounding text 

that mentions the figure, labeling the relevant sentences as “context”. For the testbed system 

we used two-dimensional data-driven plots (including scatterplots, time series, bar plots). 

3. The Index Builder constructs a search index over the extracted and annotated diagrams. 

The index tracks each extracted field separately so that keyword matches on individual parts of 

the diagram can be weighted differently during ranking. 
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As seen in Figure 4, DiagramFlyer’s online search system is similar in appearance to 

traditional Web search engines.  Answering an online query requires two additional 

components:  

1.  The Search Ranker assesses the relevance of each diagram in its index. Our system’s main 

advantage over a standard search ranker is its access to the textual features generated by the 

Diagram Extractor. 

2.  Finally, the Snippet Generator generates a brief summary of each search hit, ordering them 

according to the Search Ranker. DiagramFlyer’s Snippet Generator creates special diagram-

specific snippets that contains both graphical and textual elements. 

 

3.  Algorithms 

As mentioned above, our system has three main novel components.  Because of space 

limitations, this version of the paper only discusses the Diagram Extractor component. 

 

The Diagram Extractor uses a PDF extractor to obtain all text strings from the document.  It 

then employs a four-stage processing sequence to recover groups of labeled text strings that 

correspond to real data-driven diagrams: 

1. A trained text-centric classifier gives strings an initial label based strictly on textual features, 

such as the number of words in a string, whether a string is capitalized, distribution of parts of 

speech, and so on. 

2. We then group labeled strings together into geometrically-neighboring sets that loosely 

correspond to diagrams.  Sets without critical labels, such as relevant x-axis and y-axis data, 

are thrown away.  This filters out a huge number of strings that are not relevant to any diagram. 

3. We then recompute labels for each string, using the initial labels to compute a series of 

position-sensitive features.  For example, one important feature is a text string’s distance to the 
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nearest x-axis scale.  This round of classification substantially improves label precision and 

recall. 

4. Finally, we group the resulting labeled strings into sets that represent the final diagram 

estimates.  This step relies heavily on the semantic label applied above; for example, a 

caption string should always be part of the lower portion of a diagram. 

 

This output is then fed to the Search Ranker and Snippet Generator components. 

 

4.  Experimental Results 

The Diagram Extractor is a query-independent component, and so can be evaluated strictly 

using our downloaded corpus of scientific papers.  We started with 4.7B URLs from the English 

segment of the ClueWeb09 dataset [5].  Of these, we retained those pointing to PDF 

documents.  To target PDFs that are more likely to contain diagrams, we further restricted the 

crawl to the .edu domain. A query workload is critical for evaluating our Search Ranker and 

Snippet Generator components, but we will not discuss them in this abbreviated paper. 

 

To determine the best implementation for the Diagram Extractor, we evaluated three slightly 

different versions: 

• text-only: Just the simple textual classifier 

• all-classifiers: The textual classifier and the position-sensitive classifier, without filtering. 

• full: All steps 

 

We trained these classifiers using all of the text segments derived from more than 260 data-

driven diagrams that were randomly chosen from the PDF corpus; the segments were labelled 

by hand. We tested the results using another set of 180 similarly generated and labeled 
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diagrams. The evaluation results are shown in the below table (the best scores for any task are 

shown in bold). 

 Recall   Precision   

 text-only all full text-only all full 

title 0.256 0.651 0.674 0.344 0.609 0.617 

y-scale 0.782 0.796 0.754 0.889 0.843 0.900 

y-label 0.835 0.864 0.874 0.775 0.752 0.797 

x-scale 0.903 0.835 0.835 0.616 0.915 0.896 

x-label 0.241 0.681 0.681 0.340 0.842 0.835 

legend 0.520 0.623 0.656 0.349 0.615 0.631 

caption 0.952 0.887 0.839 0.450 0.887 0.929 

nondiagram 0.768 0.924 0.313 0.850 0.909 0.838 

 

The precision gain of full over all-classifiers is due to the diagram group filter. On a set of 449 

candidate diagram groups, this filter removed 165 bad ones and just 11 good ones. For most 

labels, this filter does not influence recall much. However, it dramatically reduces recall of non-

diagram text in the full case, from 0.9239 to 0.3126. In the case of non-diagram , a reduction 

in recall is actually a good sign: Most of the “bad candidates” arise from diagrams that are 

pictorial or otherwise not data-driven and would not make sense in the downstream search 

engine. Reducing recall for this label means that strings that are unnecessary for any diagram 

are being removed from the output and possibly downstream diagram detection. Although all-

classifiers has a comparable overall performance, we chose full in DiagramFlyer to emphasize 

precision over recall. 

    

It is clear that title and legend are the metadata items that are most difficult to classify. In 

some ways, the result is not surprising: title is not always presented, and legend can 
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appear in several different locations. Finally, we also evaluated our method for diagram re-

grouping. We successfully reconstructed 89 diagrams out of a potential 119, with just 20 

incorrect ones. These incorrect outputs arose from splitting a single diagram or joining two 

distinct diagrams. 

 

5. Related Work 

There is a vast literature on text search, snippet generation, image search, and image 

processing; much of this is not relevant to the unusual demands of searching statistical 

diagrams.  There has been some work into specialized diagram understanding (for example, in 

processing telephone system diagrams [1]), but this work is extremely tailored to a narrow 

diagram type and is not suitable for a general search application. 

        

Only a few pieces of work process diagrams in ways suit- able for Web-style search. Huang, et 

al. [6] proposed an automatic mechanism to recover actual numerical quantities from diagrams’ 

graphical components; it may be usable at large scale. Huang, et al. [7] attempted to label 

regions of chart text, similar to the Diagram Extraction phase, albeit with fewer labels and 

somewhat lower accuracy, and it is unclear whether their technique can handle multi-diagram 

images. The most relevant is work from Kataria, et al. [8] and Lu, et al. [9]. They extract 

information from paper- embedded diagrams, recovering both text labels and graphical 

elements; their text recovery component focuses on recovering OCR’ed text, with some amount 

of label recovery as a side-effect of the technique. Their system uses some of the same 

features as DiagramFlyer’s Diagram Extractor, though it is not clear how much their technique 

can be extended to yield more fine-grained labels, and they do not focus on any tasks 

downstream from the extraction stage. 
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6. Conclusion 

We have shown that domain-independent diagram extraction is possible.  In the full 

presentation we will also present evidence that shows how this system enables higher-quality 

search relevance and snippet generation than is possible using standard techniques. 
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