
Searching for Statistical Diagrams

By Shirley Zhe Chen, Michael J. Cafarella , and Eytan Adar

1. Introduction

Statistical, or data-driven, diagrams are an important method for communicating complex

information. For many technical documents, the diagrams may be readers’ only access to the

raw data underlying the documents’ conclusions.

Unfortunately, finding diagrams online is very difficult using current search systems. Standard

text-based search will only retrieve the diagrams’ enclosing documents. Web image search

engines may retrieve some diagrams, but generally work by examining textual content that

surrounds images, thus missing out on many important signals of diagram content [3, 4]. Even

the text that is present in diagrams has meaning that is hugely dependent on their geometric

positioning within the diagram’s frame; a number in the caption means something quite different

from the same number in the x-axis scale [2].

There has been growing commercial interest in making data-driven diagrams more accessible,

with data search systems such as Zanran [11] and SpringerImages [10]. While there is a huge

amount of research literature on search and image- related topics, diagram search per se is

largely unexplored.

In this paper we propose a Web search engine exclusively for data-driven diagrams. As with

other Web search engines, our system allows the user to enter keywords into a text box in order

to obtain a relevance-ranked list of objects. Our system addresses several challenges that are

common among different search engines but which require solutions specifically tailored for

data-driven diagrams:

 2

• Diagram Corpus Extraction - Obtaining the text of a Web document is usually as easy as

downloading and parsing an HTML file; in contrast, statistical diagrams require special

processing to extract useful information. They are embedded in PDFs with little to distinguish

them from surrounding text, the text embedded in a diagram is highly stylized with meaning that

is very sensitive to the text’s precise role, and because diagrams are often an integral part of a

highly-engineered document, they can have extensive “implicit hyperlinks” in the form of figure

references from the body of the surrounding text. Our Diagram Extractor component attempts

to recover all of the relevant text for a diagram and determine an appropriate semantic label

(caption, y-axis label , etc.) for each string.

Figure 1: Scaling down images works well when generating visual snippets for photos, but

diagrams can quickly become illegible.

• Ranking Quality - All search engines must figure out how to score an object’s relevance to a

search query, but scoring diagrams for relevance can yield strange and surprising results. We

use the metadata extracted from the previous step to obtain search quality that is substantially

better than naive methods.

 3

• Snippet Generation - Small summaries of the searched-for content, usually called snippets,

allow users to quickly scan a large number of results before actually selecting one. Conventional

search engines select regions of text from the original documents, while image search engines

generally scale down the original image to a small thumbnail. Neither technique can be directly

applied to data-driven diagrams. Obviously, textual techniques will not capture any visual

elements. Figure 1 shows that image scaling is also ineffective: although photos and images

remain legible at smaller sizes, diagrams quickly become difficult to understand.

This paper describes DiagramFlyer, a search engine for finding data-driven diagrams in Web

documents. It addresses each of the above challenges, yielding a search engine that

successfully extracts diagram metadata in order to provide both higher-quality ranking and

improved diagram “snippets” for fast search result scanning.

Figure 2: The data processing pipeline. An offline component crawls the Web for PDFs,

extracts the statistical graphics, and constructs an inverted text index over the resulting

extracted metadata. This index and the diagrams are then fed to an online system that ranks

diagrams according to users’ queries and generates query-appropriate search snippets. The

deep blue boxes signify research components described in this paper.

The techniques we propose are general and can work across diagrams found throughout the

Web. However, in our current testbed we concentrate on diagrams extracted from PDF files that

were discovered and downloaded from public Web pages on academic Internet domains. Our

 4

resulting corpus contains 153K PDFs and 319K diagrams. We show that DiagramFlyer ob-

tains a 52% improvement in search quality over naive approaches. Further, we show that

DiagramFlyer’s hybrid snippet generator allows users to find results 33% more accurately than

with a standard image-driven snippet. We also place DiagramFlyer’s intellectual contributions in

a growing body of work on domain-independent information extraction , techniques that enable

retrieval of structured data items from unstructured documents, even when the number of topics

(or domains) is unbounded.

Figure 3: Diagram metadata labels for a sample diagram. Some labels, such as title and

legend, are found in different places for different graphics.

2. System Overview

As with a traditional Web search engine, DiagramFlyer employs a pipeline of offline corpus-

processing steps that produce output then used by an online search query system. The system

architecture is seen in Figure 2.

The offline pipeline has three components:

 5

1. The PDF Crawler attempts to download a large number of Web-hosted scientific papers for

diagram search

Figure 4: A screenshot of the DiagramFlyer search system.

2. The Diagram Extractor receives the resulting stream of nearly 153K papers. This extractor

attempts to identify all the diagrams in the corpus and then annotate the text in each diagram

with an appropriate semantic role. As seen in Figure 3, the Diagram Extractor identifies eight

roles within the diagram (legend, caption, title, etc.). It also looks for any surrounding text

that mentions the figure, labeling the relevant sentences as “context”. For the testbed system

we used two-dimensional data-driven plots (including scatterplots, time series, bar plots).

3. The Index Builder constructs a search index over the extracted and annotated diagrams.

The index tracks each extracted field separately so that keyword matches on individual parts of

the diagram can be weighted differently during ranking.

 6

As seen in Figure 4, DiagramFlyer’s online search system is similar in appearance to

traditional Web search engines. Answering an online query requires two additional

components:

1. The Search Ranker assesses the relevance of each diagram in its index. Our system’s main

advantage over a standard search ranker is its access to the textual features generated by the

Diagram Extractor.

2. Finally, the Snippet Generator generates a brief summary of each search hit, ordering them

according to the Search Ranker. DiagramFlyer’s Snippet Generator creates special diagram-

specific snippets that contains both graphical and textual elements.

3. Algorithms

As mentioned above, our system has three main novel components. Because of space

limitations, this version of the paper only discusses the Diagram Extractor component.

The Diagram Extractor uses a PDF extractor to obtain all text strings from the document. It

then employs a four-stage processing sequence to recover groups of labeled text strings that

correspond to real data-driven diagrams:

1. A trained text-centric classifier gives strings an initial label based strictly on textual features,

such as the number of words in a string, whether a string is capitalized, distribution of parts of

speech, and so on.

2. We then group labeled strings together into geometrically-neighboring sets that loosely

correspond to diagrams. Sets without critical labels, such as relevant x-axis and y-axis data,

are thrown away. This filters out a huge number of strings that are not relevant to any diagram.

3. We then recompute labels for each string, using the initial labels to compute a series of

position-sensitive features. For example, one important feature is a text string’s distance to the

 7

nearest x-axis scale. This round of classification substantially improves label precision and

recall.

4. Finally, we group the resulting labeled strings into sets that represent the final diagram

estimates. This step relies heavily on the semantic label applied above; for example, a

caption string should always be part of the lower portion of a diagram.

This output is then fed to the Search Ranker and Snippet Generator components.

4. Experimental Results

The Diagram Extractor is a query-independent component, and so can be evaluated strictly

using our downloaded corpus of scientific papers. We started with 4.7B URLs from the English

segment of the ClueWeb09 dataset [5]. Of these, we retained those pointing to PDF

documents. To target PDFs that are more likely to contain diagrams, we further restricted the

crawl to the .edu domain. A query workload is critical for evaluating our Search Ranker and

Snippet Generator components, but we will not discuss them in this abbreviated paper.

To determine the best implementation for the Diagram Extractor, we evaluated three slightly

different versions:

• text-only: Just the simple textual classifier

• all-classifiers: The textual classifier and the position-sensitive classifier, without filtering.

• full: All steps

We trained these classifiers using all of the text segments derived from more than 260 data-

driven diagrams that were randomly chosen from the PDF corpus; the segments were labelled

by hand. We tested the results using another set of 180 similarly generated and labeled

 8

diagrams. The evaluation results are shown in the below table (the best scores for any task are

shown in bold).

 Recall Precision

 text-only all full text-only all full

title 0.256 0.651 0.674 0.344 0.609 0.617

y-scale 0.782 0.796 0.754 0.889 0.843 0.900

y-label 0.835 0.864 0.874 0.775 0.752 0.797

x-scale 0.903 0.835 0.835 0.616 0.915 0.896

x-label 0.241 0.681 0.681 0.340 0.842 0.835

legend 0.520 0.623 0.656 0.349 0.615 0.631

caption 0.952 0.887 0.839 0.450 0.887 0.929

nondiagram 0.768 0.924 0.313 0.850 0.909 0.838

The precision gain of full over all-classifiers is due to the diagram group filter. On a set of 449

candidate diagram groups, this filter removed 165 bad ones and just 11 good ones. For most

labels, this filter does not influence recall much. However, it dramatically reduces recall of non-

diagram text in the full case, from 0.9239 to 0.3126. In the case of non-diagram , a reduction

in recall is actually a good sign: Most of the “bad candidates” arise from diagrams that are

pictorial or otherwise not data-driven and would not make sense in the downstream search

engine. Reducing recall for this label means that strings that are unnecessary for any diagram

are being removed from the output and possibly downstream diagram detection. Although all-

classifiers has a comparable overall performance, we chose full in DiagramFlyer to emphasize

precision over recall.

It is clear that title and legend are the metadata items that are most difficult to classify. In

some ways, the result is not surprising: title is not always presented, and legend can

 9

appear in several different locations. Finally, we also evaluated our method for diagram re-

grouping. We successfully reconstructed 89 diagrams out of a potential 119, with just 20

incorrect ones. These incorrect outputs arose from splitting a single diagram or joining two

distinct diagrams.

5. Related Work

There is a vast literature on text search, snippet generation, image search, and image

processing; much of this is not relevant to the unusual demands of searching statistical

diagrams. There has been some work into specialized diagram understanding (for example, in

processing telephone system diagrams [1]), but this work is extremely tailored to a narrow

diagram type and is not suitable for a general search application.

Only a few pieces of work process diagrams in ways suit- able for Web-style search. Huang, et

al. [6] proposed an automatic mechanism to recover actual numerical quantities from diagrams’

graphical components; it may be usable at large scale. Huang, et al. [7] attempted to label

regions of chart text, similar to the Diagram Extraction phase, albeit with fewer labels and

somewhat lower accuracy, and it is unclear whether their technique can handle multi-diagram

images. The most relevant is work from Kataria, et al. [8] and Lu, et al. [9]. They extract

information from paper- embedded diagrams, recovering both text labels and graphical

elements; their text recovery component focuses on recovering OCR’ed text, with some amount

of label recovery as a side-effect of the technique. Their system uses some of the same

features as DiagramFlyer’s Diagram Extractor, though it is not clear how much their technique

can be extended to yield more fine-grained labels, and they do not focus on any tasks

downstream from the extraction stage.

 10

6. Conclusion

We have shown that domain-independent diagram extraction is possible. In the full

presentation we will also present evidence that shows how this system enables higher-quality

search relevance and snippet generation than is possible using standard techniques.

7. Bibliography

1. J. F. Arias, C. P . Lai, S. Surya, R. Kasturi, and A. K. Chhabra. Interpretation of telephone

system manhole drawings. Pattern Recognition Letters, 16(4):355–369, 1995.

2. J. Bertin. Semiology of graphics: diagrams, networks, maps. University of Wisconsin

Press, 1983.

3. S. Bhatia, P . Mitra, and C. L. Giles. Finding algorithms in scientific articles. In WWW,

2010.

4. S. Carberry, S. Elzer, and S. Demir. Information graphics: An untapped resource for

digital libraries. In SIGIR, 2006.

5. 2009. ClueWeb09, http://lemurproject.org/clueweb09.php/ .

6. W. Huang, C. Tan, and W. Loew. Model-based chart image recognition. In GREC, 2003.

7. W. Huang, C. L. Tan, and W. K. Leow. Associating text and graphics for scientific chart

understanding. In ICDAR, 2005.

8. S. Kataria, W. Browuer, P . Mitra, and C. L. Giles. Automatic extraction of data points and

text blocks from 2-dimensional plots in digital documents. In AAAI, 2008.

9. X. Lu, S. Kataria, W. J. Brouwer, J. Z. Wang, P . Mitra, and C. L. Giles. Automated

analysis of images in documents for intelligent document search. IJDAR, 12(2):65–81,

2009.

10. 2011. SpringerImages, http://www.springerimages.com/.

11. 2011. Zanran, http://www.zanran.com/q/.

http://lemurproject.org/clueweb09.php/
http://www.springerimages.com/
http://www.zanran.com/q/

