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Abstract:  

The notion that a computer can decode brain signals to infer the intentions of a human subject 
and then enact those intentions directly through a machine is emerging as a realistic technical 
possibility.  These types of devices are known as Brain Computer Interfaces or BCIs. The 
evolution of these neuroprosthetic technologies could have significant implications for patients 
with motor disabilities by enhancing their ability to interact and communicate with their 
environment.  Classically, the cortical physiology that has been most investigated and utilized for 
device control have been brain signals from primary motor cortex.  To date, this classic motor 
physiology has been an effective substrate for demonstrating the potential efficacy of BCI based 
control.  Emerging research in cortical physiology, however, now stands to further enhance our 
understanding of the cortical physiology underpinning human intent and provide further signals 
for more complex brain derived control.  In this review, we will review the current status of 
Brain Computer Interfaces and detail the emerging research trends that stand to further augment 
clinical application in the future.  

 

Introduction:   

The notion that the brain can be directly accessed to allow a human being to control an 
external device with their thoughts alone is emerging as a real option for patients with motor 
disabilities.  This area of study, known as Neuroprosthetics, has sought to create devices, known 
as Brain-Computer Interfaces (BCIs), that acquire brain signals and translate them to machine 
commands such that they reflect the intentions of the user.  In the past twenty years, the field has 
progressed rapidly from fundamental neuroscientific discovery to initial translational 
applications.   Examples are seen in the seminal discoveries by Georgopoulus and Schwartz that 
neurons in motor cortex, when taken as a population, can predict direction and speed of arm 
movements in monkeys. [1-3]  In the subsequent decades, these findings were translated to 
increasing levels of brain-derived control in monkeys and to preliminary human clinical trials. 
[4, 5] Fundamental to the evolution of neuroprosthetic application, this brain-derived control is 
dependent on the emerging understanding of cortical physiology as it encodes information about 
intentions. In recent years, an emerging understanding of how cortex encodes motor and non-
motor intentions, sensory perception, and the role that cortical plasticity plays in device control 
have led to new insights in brain function and BCI application.  These new discoveries stand to 
further expand the potential of neuroprosthetics both in regards to control capability and patient 
populations that will be served.  In this review, we will provide an overview of current BCI 
modalities, of emerging research on the use of non-motor areas for BCI applications, and we will 
assess their potential for clinical impact.   
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Brain Computer Interface: Definition and Essential Features 

A BCI is a device that can decode human intent from brain activity alone in order to 
create an alternate communication channel for people with severe motor impairments.  More 
explicitly, a BCI does not require the “brain’s normal output pathways of peripheral nerves and 
muscles” to facilitate interaction with one’s environment. [6] [7]  A real-world example of this 
would entail a quadriplegic subject controlling a cursor on a screen with signals derived from 
individual neurons recorded in primary motor cortex without the need of overt motor activity. It 
is important to emphasize this point.  A true BCI creates a completely new output pathway for 
the brain. 

As a new output pathway, the user must have feedback to improve the performance of 
how they alter their electrophysiological signals.  Similar to the development of a new motor 
skill (e.g. learning to play tennis),there must be continuous alteration of the subject’s neuronal 
output. The output should be matched against feedback from their intended actions such that the 
subject’s output (swinging the tennis racket or altering a brain signal) can be tuned to optimize 
their performance toward the intended goal (getting the ball over the net or moving a cursor 
towards a target).  Thus, the brain must change its signals to improve performance, but 
additionally the BCI may also be able to adapt to the changing milieu of the user’s brain to 
further optimize functioning.  This dual adaptation requires a certain level of training and 
learning curve, both for the user and the computer.  The better the computer and subject are able 
to adapt, the shorter the training that is required for control. 

There are four essential elements to the practical functioning of a brain computer 
interface platform. (Figure 1)  

1) Signal acquisition, the BCI system’s recorded brain signal or information input. 

2) Signal processing, the conversion of raw information into a useful device command. 

3) Device output, the overt command or control functions that are administered by the BCI 
system. 

4) Operating protocol, the manner in which the system is altered and turned on and off [7]. 

All of these elements play in concert to manifest the user’s intention to his or her 
environment. 

Signal acquisition is some real-time measurement of the electrophysiological state of the 
brain.  This measurement of brain activity is usually recorded via electrodes, but this is by no 
means a theoretical requirement.  These electrodes can be either invasive or non-invasive.  The 
most common types of signals include electroencephalography  (EEG), electrical brain activity 
recorded from the scalp [8-13], electrocorticography (ECoG) [14, 15],  electrical brain activity 
recorded beneath the skull [14-16],  field potentials, electrodes monitoring brain activity from 
within the parenchyma [17], and “single units”, microelectrodes monitoring individual neuron 
action potential firing. [2, 4, 18, 19]  Figure 2 shows the relationship of the various signal 
platforms in terms of anatomy and population sampled. Once acquired, the signals are then 
digitized and sent to the BCI system for further interrogation. 
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In the signal processing portion of BCI operation, there are two essential functions: 
feature extraction and signal translation.  The first function extracts significant identifiable 
information from the gross signal, the second converts that identifiable information into device 
commands. The process of converting raw signal into one that is meaningful requires a complex 
array of analyses. These techniques can vary from assessment of frequency power spectra, event 
related potentials, and cross correlation coefficients for analysis of EEG /ECoG signals to 
directional cosine tuning of individual neuron action potentials. [3, 20, 21]  The impetus for these 
methods is to determine the relationship between an electrophysiologic event and a given 
cognitive or motor task.  As an example, after recordings are made from an ECoG signal, the 
BCI system must recognize that a signal alteration has occurred in the electrical rhythm (feature 
extraction) and then associates that change with a specific cursor movement (translation).  As 
mentioned above, it is important that the signal processing be dynamic such that it can adjust to 
the changing internal signal environment of the user.  In regards to the actual device output, this 
is the overt action that the BCI accomplishes.  As in the previous example, this can result in 
moving a cursor on a screen; other possibilities are choosing letters for communication, 
controlling a robotic arm, driving a wheelchair, or controlling some other intrinsic physiologic 
process such as moving one’s own limb or controlling their bowel and bladder sphincters. [22] 

An important consideration for practical application is the overall operating protocol.  
This refers to the manner in which the user controls how the system functions.  The “how” 
includes such things as turning the system on or off, controlling what kind of feedback and how 
fast it is provided, how quickly the system implements commands, and switching between 
various device outputs.   These elements are critical for BCI functioning in the real world 
application of these devices.  In most current research protocols, these parameters are set by the 
investigator.  In other words, the researcher turns the system on and off, he or she adjusts the 
speed of interaction, or defines very limited goals and tasks.  These are all things that the user 
will need to be able to do by himself in an unstructured applied environment.   

Current BCI Platforms: 

There are currently three general categories of BCI platforms that have been put forward 
as possible candidates for clinical application.  These categories are primarily determined by the 
source from which the controlling brain signal is derived.  The first category utilizes 
electroencephalography (EEG) which is brain signals acquired from the scalp. The second 
category, referred to as “single unit systems” utilizes intraparenchymal microelectrodes that 
detect action potential firings of individual neurons.   The third is an intermediate modality in 
which electrodes acquire signal from the cortical surface directly (either above or below the 
dura). The current status of each of these platforms will be briefly reviewed in terms of level of 
control, surgical considerations, and current clinical populations served.  

Electroencephalography (EEG) Based Systems 

EEG-based BCIs use electrical activity recorded from the scalp.  [23-37]  Most BCI 
studies in humans used EEG, probably because this recording method is convenient, safe, and 
inexpensive.   

 
EEG has a relatively poor spatial resolution. This is because a large brain area must be 

involved to generate the necessary detectable signals. [38, 39]  Despite this limitation, signals 
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relevant to BCI research  can still be found in the EEG.  This includes modulations of mu (8-12 
Hz) or beta (18-25 Hz) rhythms produced by sensorimotor cortex.  These rhythms  show non-
specific changes (typically decreases in amplitude) related to movements and movement 
imagery.  They do not contain specific information about the details of movements, such as the 
position or velocity of hand movements.  This may be an important limitation, because signals 
associated with specific movement parameters are typically used in BCI systems based on action 
potential firing rates.  Another issue of EEG recordings is that the detected amplitudes are very 
small. This makes them susceptible to artifacts created by sources outside the brain such as 
electromyographic (EMG) signals produced by muscle contractions. Despite these potentially 
limiting issues, EEG-based BCIs have been shown to support higher performance than often 
assumed, including accurate two-dimensional [32, 36] and even three-dimensional control of a 
computer cursor[40].  To date, the large majority of clinical application of BCI technologies for 
people with severe motor disabilities have been demonstrated using EEG. [33, 35, 41] 
Ultimately, this intrinsic lack of signal robustness may have important implications for chronic 
application of BCI systems in real-world environments. BCI systems based on EEG typically 
require substantial training [32, 42] to achieve accurate 1D or 2D device control (about 20 and 
50 30-min training sessions, respectively) although some reports have reported training 
requirements that are shorter than that.[34]  These shortcomings of noise sensitivity and 
prolonged training are fundamental limitations in the scalability of widespread clinical 
application of EEG based BCIs.   

 
In summary, EEG has been shown to support much higher performance than previously 

assumed and is currently the only modality that has been shown to actually help people with 
paralysis.  However, because of its important limitations, it is currently not clear to what extent 
EEG-based BCI performance, in the laboratory and in clinical settings, can be further enhanced. 

 
Single Neuron Based Systems 

 From a purely engineering point of view, the optimal method to extract electrical 
information from the brain would be to place a series of small recording electrodes directly into 
the cortical layers (1.5 – 3mm) to record signals from individual neurons.  This, in essence, is 
what single-unit action potential BCI systems do and they have been very successful for limited 
time periods in both monkeys [4, 43-45] and humans.[5, 18]  To extract single-unit activity, 
small microelectrodes having ~20 micron diameter tips are inserted in the brain parenchyma 
where relatively large (e.g. 300 microvolt) extracellular action potentials are recorded from 
individual neurons from 10-100 microns away.  These signals are usually band passed filtered 
from 300-10,000 Hz and then passed through a spike discriminator to measure spike time 
occurrences.  The firing rates of individual neurons are computed in 10 to 20 millisecond bins 
and "decoded" to provide a high fidelity prediction to control either a computer cursor or robot 
endpoint kinematics. [2, 46, 47]   Given its high spatial resolution (100 microns) as well as its 
high temporal resolution (50-100 Hz) this modality arguably provides the highest level of control 
in BCI applications.   

 Unfortunately, there are two major problems with single unit BCIs.  First the electrodes 
must penetrate into the parenchyma where they cause local neural and vascular damage [48]  
Secondly, single unit action potential microelectrodes are very sensitive to encapsulation.  
Insertion of penetrating devices in the brain parenchyma damages neurons and vasculature, 
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which can initiate a cascade of reactive cell responses, typically characterized by activation and 
migration of microglia and astrocytes towards the implant site.[48]  Continued presence of 
devices promotes formation of a sheath composed partly of these reactive astrocytes and 
microglia.[49, 50]  This reactive sheath can have numerous deleterious effects, including neural 
cell death and an increased tissue resistance that electrically isolates the device from the 
surrounding neural tissue [49, 51, 52].  Research into novel biomaterial coatings and/or local 
drug delivery systems that may reduce the foreign body response to implanted electrodes is 
ongoing, but to date, is far from clinical application.[53-55]  Until these issues are solved, this 
remains a limitation for developing a long-term BCI system based on single-unit activity. 

Electrocorticography Based Systems 

Over the past five years, the use of electrocorticography (ECoG) as a signal platform for 
BCI has gained mounting enthusiasm as a more practical and robust platform for clinical 
application. As detailed above, both EEG and single unit based systems have been impeded for 
large-scale clinical application. This is either due to prolonged user training and poor signal to 
noise limitations with EEG, or due to inability to maintain consistent signal with current single 
unit constructs.[48, 49] [56]  The use of ECoG has been posited to be an ideal tradeoff for 
practical implementation.[14]   When compared to EEG, the signal is substantially more robust. 
Its magnitude is typically five times larger, its spatial resolution is much greater (0.125 versus 
3.0 cm for EEG), and its frequency bandwidth is significantly higher (0-500 Hz versus 0- 40 Hz 
for EEG).[13, 57, 58]  Of particular note, the access to higher frequency bandwidths carries 
particularly useful information amenable to BCI operation[59]. Many studies have demonstrated 
that different frequency bands carry specific and anatomically distinct information about cortical 
processing.  The lower-frequency bands known as mu (8-12 Hz) and beta (18-26 Hz), which are 
detectable with EEG, are thought to be produced by thalamocortical circuits and show broad 
anatomic decreases in amplitude in association with actual or imagined movements.[21, 60-62]  
The higher frequencies only appreciable with ECoG, also known as gamma band activity, are 
thought to be produced by smaller cortical assemblies.  Gamma activity shows close correlation 
with action potential firing of tuned cortical neurons in primary motor cortex in monkey 
models.[63]  Additionally, these high frequency changes have been associated with numerous 
aspects of speech and motor function in humans.[14, 59, 64-68] Beyond higher information 
content, since the ECoG single is recorded from larger electrodes that do not penetrate the brain, 
these constructs should have a higher likelihood for long-term clinical durability. This 
expectation of good long-term stability of ECoG sensors is supported by some pathologic and 
clinical evidence. For example, in cat, dog, and monkey models, long-term subdural implants 
showed minimal cortical or leptomeningeal tissue reaction while maintaining prolonged 
electrophysiologic recording. [68-72] Additionally, preliminary work in humans using the 
implantable NeuroPace device for the purpose of long-term subdural electrode monitoring for 
seizure identification and abortion has also been shown to be stable. [73]  

The use of ECoG for BCI applications has been primarily studied in motor intact patients 
with intractable epilepsy requiring invasive monitoring. Similar to EEG-based BCI systems, the 
ECoG approach has primarily focused on the use of changes in sensorimotor rhythms from 
motor cortex.   What has been distinct, however, has been the access to the higher frequency 
gamma rhythms with ECoG.  Utilization of these higher frequency rhythms have provided 
significant advantage in regards to training requirements and multidimensional control. In 2004, 
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Leuthardt et al demonstrated the  first use of ECoG in closed-loop control in a one-dimensional 
cursor control task with minimal training requirements (under 30 minutes).  In additional 
experiments, the same group and others have demonstrated that specific frequency alterations 
encode very specific information about hand and arm movements. [14, 74-76] In 2006, Leuthardt 
et al further demonstrated that ECoG control using signal from the epidural space was also 
possible.[77] Schalk et al has shown that ECoG signals can be utilized for two-dimensional 
control whose performance was within the range of that shown before using invasive single-unit 
systems.[78] Because the electrode arrays cover broad regions of cortex, several groups have 
begun to explore alternate cognitive modalities and their cortical physiologies to expand BCI 
device control.  Felton et al. has shown that, in addition to motor imagery, sensory imagery could 
also be used for device control.[79] The same group also demonstrated that auditory cortex could 
be trained to acquire simple control of a cursor.[80] Ramsey et al. shows that higher cognitive 
functions, such as working memory in dorsal lateral prefrontal cortex, can also be used for 
effective device operation. [81] Recently, Leuthardt et al demonstrated that phonemic content 
taken from speech networks could also be used a for simple device control.[82] 

Taken together, these studies show that ECoG signals carry a high level of specific 
cortical information, and that these signals can allow a user to gain control rapidly and 
effectively. It is worth noting that these control paradigms have not been extended to motor 
impaired subjects thus far.  How these cortical signals will be affected in the setting of a spinal 
cord injury or ALS has not been explicitly tested.  

Conclusions: 

The field of neuroprosthetics is growing rapidly.  The cortical physiology that underpins 
the manner in which a human brain encodes intentions is beginning to be understood. This will 
have significant impact in augmenting function for those with various forms of motor 
disabilities.  As research stretches beyond motor physiology, the field of neuroprosthetics now 
stands to further expand in capability and in diversity of clinical population served. The evolving 
understanding of cortical physiology as it relates to motor movements, language function, and 
plasticity, could all provide higher levels of complexity in brain derived control. Given the rapid 
progression of these technologies over the past decade and the concomitant swift  ascent of 
computer processing speeds,  signal analysis techniques, and emerging ideas for novel 
biomaterials,  neuroprosthetic implants will hopefully in the near future be as common as deep 
brain stimulators are today.  The clinical advent of this technology will usher in a new era of 
restorative neurosurgery and new human machine interfaces.   
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Figure 1: Essential Features and Components of a BCI 

There are four essential elements to the practical functioning of a brain computer interface platform: 1) 
Signal acquisition, the BCI system’s recorded brain signal or information input, 2) Signal processing, the 
conversion of raw information into a useful device command, 3) Device output, the overt command or 
control functions that are administered by the BCI system, and 4) Operating protocol, the manner in 
which the system is turned on and off, and the way in which the user or a technical assistant adjusts 
parameters of the previous three steps in converting intentions to machine commands). All of these 
elements play in concert to manifest the user’s intention to his or her environment.[86] Taken from[87]. 

 

 

 

Figure 2: Signals for BCI 

The figure shows the three general categories of signals that are used for Brain Computer Interface 
application and their anatomic location relative to the brain and its respective covering layers. EEG: 
electroencephalography, ECoG, electrocorticography. Taken from[87]. 
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