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Abstract 
Image annotation is the task of providing textual semantic to new images, by ranking a 
large set of possible annotations according to how they correspond to a given image. In 
the large scale setting, there could be millions of images to process and hundreds of 
thousands of potential distinct annotations. In order to achieve such a task we propose to 
build a so-called "embedding space", into which both images and annotations can be 
automatically projected. In such a space, one can then find the nearest annotations to a 
given image, or annotations similar to a given annotation. One can even build a visio-
semantic tree from these annotations, that corresponds to how concepts (annotations) 
are similar to each other with respect to their visual characteristics. Such a tree will be 
different from semantic-only trees, such as WordNet, which do not take into account the 
visual appearance of concepts. 

1. Introduction 
The emergence of the web as a tool for sharing information has caused a massive increase in 
the size of potential datasets available for machines to learn from.  Millions of images on web 
pages have tens of thousands of possible annotations in the form of HTML tags (which can be 
conveniently collected by querying search engines (Torralba et al, 2008)), tags such as in 
www.flickr.com, or human-curated labels such as in www.image-net.org (Deng et al, 2009). We 
therefore need machine learning algorithms for image annotation that can scale to learn from 
and annotate such data. This includes: (i) scalable training and testing times, and (ii) scalable 
memory usage. In the ideal case we would like a fast algorithm that fits on a laptop, at least at 
annotation time. For many recently proposed models tested on small datasets, it is unclear if 
they satisfy these constraints. 
 
In the first part of this work, we study feasible methods for just such a goal. We consider models 
that learn to represent images and annotations jointly in a low dimension embedding space. 
Such embeddings are fast at testing time because the low dimension implies fast computations 
for ranking annotations. Simultaneously, the low dimension also implies small memory usage. 
To obtain good performance for such a model,  we propose to train its parameters by learning to 
rank, optimizing for the top annotations in the list, e.g. optimizing precision at k (p@k). 
 
In the second part of this work, we propose a novel algorithm to improve testing time in multi-
class classification tasks where the number of classes (or labels) is very large and where even a 
linear algorithm in the number of classes can become computationally infeasible. We propose 
an algorithm for learning a tree-structure of the labels in the previously proposed joint 

                                                
1This work summarizes the following papers: (Weston et al, 2010) with Jason Weston and Nicolas 
Usunier, and (Bengio et at, 2010), with Jason Weston and David Grangier. 
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embedding space which, by optimizing the overall tree loss, provides a superior accuracy to 
existing tree labeling methods. 

2. Joint Embedding of Images and Labels 
 
We propose to learn a mapping into a feature space where images and annotations are both 
represented, as illustrated in Figure 1. The mapping functions are therefore different, but are 
learnt jointly to optimize the supervised loss of interest for our final task, that of annotating 
images. We start with a representation of images  and a representation of annotations 

, indices into a dictionary of possible annotations. We then learn a mapping from 
the image feature space to the joint space : 

 
while jointly learning a mapping for annotations: 

. 
 

 
Figure 1: Joint Embedding Space 

These are chosen to be linear maps, i.e.  and , where  indexes 
the  column of a  matrix, but potentially any mapping could be used. In our work, we 
use sparse high dimensional feature vectors of bags-of-visual terms for image vectors  and 
each annotation has its own learnt representation (even if, for example, multi-word annotations 
share words). Our goal is, for a given image, to rank the possible annotations such that the 
highest ranked annotations best describe the semantic content of the image. We consider the 
following model: 
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where the possible annotations  are ranked according to the magnitude of , largest first. 

2.1. Image Labelling as a Learning-To-Rank Task 
Labelling an image can be viewed as a ranking task where, given an image, one needs to order 
labels such that the top ones correspond to the image, while the bottom ones are unrelated to it. 
Various learning-to-rank methods have been proposed in the machine learning literature over 
the years, some of which can scale to large datasets (while others can’t). The simplest scalable 
approach is the following: one can decompose the ranking task as a large sum of several 
smaller tasks: 

 
where for each training image , we want the score of each good label to be higher than the 
score of any bad label by a margin of at least one, otherwise we pay the corresponding price. 
This loss can be trained very efficiently on very large datasets using stochastic gradient 
descent. However, a better alternative would be a loss that concentrates on the top of the 
ranking, instead of considering every triplets ( ) uniformly. In (Weston et al, 2010), we 
proposed the WARP loss, which can weigh each of the triplets according to the estimated rank 
of the good labels, and still yield an efficient implementation. The resulting model is much faster 
to train and obtains a much better performance at the top of the ranking. 

2.2. Large Scale Learning 
We trained an embedding model with the WARP loss on a very large dataset, containing more 
than 10 million training images and more than 100 thousand labels, where labels correspond to 
queries uttered on Google Image Search and images attributed to these labels were images 
often clicked for these queries. That meant a very noisy data, where queries are in several 
languages, with many spelling mistakes an many apparently similar queries. 
 
An interesting side effect of training such a model is that it provides a natural way of organizing 
labels among themselves, by looking at the nearest labels of a given label in the embedding 
space. Table 1 shows some examples of the nearest labels of some labels, where we see 
several misspellings, translations, and semantically similar labels. 
 

Target Label Nearest Labels 

barack obama barak obama, obama, barack, barrack obama, bow wow, george bush 

david beckham beckham, david beckam, alessandro del piero, del piero, david becham 

santa santa claus, papa noel, pere noel, santa clause, joyeux noel, tomte 

dolphin delphin, dauphin, whale, delfin, delfini, baleine, blue whale, walvis 
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cows cattle, shire, dairy cows, kuh, horse, cow, shire horse, kone, holstein 

rose rosen, hibiscus, rose flower, rosa, roze, pink rose, red rose, a rose 

pine tree abies alba, abies, araucaria, pine, neem tree, oak tree, pinus sylvestris 

mount fuji mt fuji, fujisan, fujiyama, mountain, zugspitze, fuji mountain 

eiffel tower eiffel, tour eiffel, la tour eiffel, big ben, paris, blue mosque, eifel tower 

ipod i pod, ipod nano, apple ipod, ipod apple, new ipod, ipod shuffle 

f18 f 18, eurofighter, f14, fighter jet, tomcat, mig21, f 16 

 
Table 1: Nearest labels in the embedding space learnt on the Web-data. 

 
Finally, we show in Table 2 examples of images from our test set (there was more than 3 
millions of them, different from the 10 millions of training images), as well as the nearest 10 
labels in the embedding space. 
 

Target Image Nearest Labels Target Image Nearest Labels 

 

delfini, orca, dolphin, 
mar, delfin, dauphin, 
whale, cancun, killer 
whale, sea world 

 

barrack obama, barack 
obama, barack hussein 
obama, barack obama, 
james marsden, jay z, 
obama, nelly, falco, 
barack 

 

eiffel tower, statue, 
eiffel, mole 
antoneliana, la tour 
eiffel, londra, cctv 
tower, big ben, 
calatrava, tokyo tower 

 

ipod, ipod nano, nokia, 
i pod, nintendo ds, 
nintendo, lg, pc, nokia 
7610, vino 

 
Table 2: Examples of the top 10 labels obtained for some test images. 

3. Learning Label Trees 
Labelling images when the number of labels is large (in Section 2, we had on the order of 
100,000 labels) can be prohibitive for real-time applications. We thus proposed in (Bengio, 
2010) a novel approach to learn a Label Tree, where each node makes a prediction of the 
subset of labels to be considered by its children, thus decreasing the number of labels at a 
logarithmic rate until a prediction is reached. Existing approaches (Beygelzimer et al, 2009a, 
Beygelzimer et al, 2009b, Hsu et al, 2009) typically lose accuracy compared to naive linear time 
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approaches. Instead, we apply the following two steps: (a) learning a label tree, and (b) learning 
predictors for each of the nodes of the tree. 

3.1. Learning the Label Tree Structure 
In order to learn a label tree such as the one in Figure 2, we proceed as follows: given a set of 
labels in a node, we look for a partition of that set into subsets such that inside a subset, labels 
are difficult to distinguish with classifiers trained on their corresponding images, while it is easier 
to distinguish images belonging to labels of a subset from images belonging to labels of another 
subset. We do so by computing the confusion matrix between all labels, where we count the 
number of times our classifiers confuse class  with class , and use this matrix to apply 
spectral clustering (Ng et al, 2002). This procedure can then be applied recursively to obtain a 
complete label tree. Table 3 gives an examples of labels that were clustered together thanks to 
that technique. 

 
Figure 2: Example of a label tree. 

 
 
 

great white sharks, imagenes 
de delfines, liopleurodon  
meduse, mermaid tail, 
monstre du loch ness, 
monstruo del lago ness, 
oarfish, oceans, sea otter, 
shark attacks, sperm whale, 
tauchen, whales 

apple iphone 3gs, apple ipod, 
apple tablet, bumper, iphone 
4, htc diamond, htc hd, htc 
magic, htc touch pro 2, 
iphone 2g, iphone 3, iphone 
5g, iphone app, iphone apple, 
iphone apps, iphone nano 

chevy colorado, custom 
trucks, dodge ram, f 250, ford 
excursion, ford f 150, mini 
truck, nissan frontier, offroad, 
pickup, toyota tundra 

Table 3: Examples of obtained clusters of labels. 
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3.2. Learning a Label Embedding Tree 
Once labels are organized into a tree, one can retrain jointly an embedding model (using the 
algorithm described in Section 2) where each image can now be labeled either with its original 
labels, or any of the nodes of the tree that contains them. Moreover, whenever an internal node 
is selected as a positive label for a given image during training, we select a competing negative 
label as a sibling node in the label tree, as this corresponds to how the tree would then be used 
at test time. 
 
The result provides a structure of labels based on both semantic and visual similarities. 
Furthermore, the performance of a label embedding tree is not only faster at test time, it is also 
better on average, as can be seen in (Bengio et al, 2010). 

References 
[Bengio et al, 2010] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class 
tasks. In Advances in Neural Information Processing Systems, NIPS, 2010. 
[Beygelzimer et al, 2009a] A. Beygelzimer and J. Langford and P. Ravikumar. Error-correcting 
tournaments. In International Conference on Algorithmic Learning Theory, ALT. pp. 247-262, 2009. 
[Beygelzimer et al, 2009b] A. Beygelzimer and J. Langford and Y. Lifshits and G. Sorkin and A. Strehl. 
Conditional Probability Tree Estimation Analysis and Algorithm. In Conference in Uncertainty in Artificial 
Intelligence, UAI, 2009. 
[Deng et al, 2009] Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and Li, K. and Fei-Fei, L. 
ImageNet: A Large-Scale Hierarchical Image Database. In IEEE Conference on Computer Vision and 
Pattern Recognition, CVPR, 2009. 
[Hsu et al, 2009] D. Hsu and S. Kakade and J. Langford and T . Zhang. Multi-Label Prediction via 
Compressed Sensing. In Advances in Neural Information Processing Systems, NIPS, 2009. 
[Ng et al, 2002] Ng, A.Y. and Jordan, M.I. and Weiss, Y . On spectral clustering: Analysis and an 
algorithm. In Advances in Neural Information Processing Systems, NIPS, 2002. 
[Torralba et al, 2008] A. Torralba and R. Fergus and W. T . Freeman. 80 million tiny images: a large 
dataset for non-parametric object and scene recognition. In IEEE Transactions on Pattern Analysis and 
Machine Intelligence. vol 30, issue 11, pp. 1958-1970, 2008. 
[Weston et al, 2010] J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: Learning to 
rank with joint word-image embeddings. In Proceedings of the European Conference on Machine 
Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD, 2010. 


