

5-8 June 2011

Symposium on Japan America Frontier of Engineering (JAFOE) Robotics Session:

# Human-like Assembly Robots in Factories



8th June 2011

YASKAWA ELECTRIC CORPORATION Corporate R&D Center

Robotics Technology R&D Group Shingo Ando

### Contents

- Introduction: Overview of Industrial Robots
- Focus on "Force Control" and "Assembly Robots"
- Technical Problems on Human-like Assembly Robots
- How to deal the Problems (current solutions)
- Future Challenges and Directions

# Introduction: Overview of Industrial Robots (1/3) 20110520

- What is Industrial Robot?
  - Manufacturing machine that substitutes for human worker(s)
  - Defined by ISO8373:1994 as an automatically controlled, reprogrammable, multipurpose manipulator with three or more axes
  - Controlled by Teach & Playback method



# Introduction: Overview of Industrial Robots (2/3) 20110520

- Brief History of Industrial Robots
  - > Born in the USA in early 1960s (Unimate 1961, Versatran 1961)
  - > Grown up in Japan in 1970s

Unimate was imported by Kawasaki Heavy Industry

- Hydraulic to electric actuation
- Absolute encoder
- Spread all over the world (more than one million robots are working)...why? High speed, high precision, high power and keep working



#### Introduction: Overview of Industrial Robots (3/3)

#### Current Applications and Control

- > Welding, painting, handling...
- > Only position is controlled



Arc welding



**Bumper painting** 



20110520

LCD glass handling

#### Even now, assembly process are done by human workers Force control is needed to realize assembly task by robots

#### Focus on "Force Control" and "Assembly Robots" (1/3)20110520

- Force control was intensively researched 1980 ~ 2000
  - Ex. Compliance Control, Impedance Control
- Not used for industrial robots...why?
  - Lack of CPU performance
  - > High cost of force sensor



#### Focus on "Force Control" and "Assembly Robots" (2/3)20110520

- Situation changed 2000s ~
  - > CPU performance Improved
  - Force sensor cost down
  - > Vision sensor advanced

Attempts to develop assembly robots





Insertion by Force control

Parts picking by 3D vision sensor

#### Focus on "Force Control" and "Assembly Robots" (3/3)20110520

- Human-like Industrial Robots
  - Redundant degrees of freedom
  - > Dual arm
  - > Almost same size as human



Human-like Assembly Robots are in the spotlight



#### Technical Problems on Human-like Assembly Robot

- 1. Recognition problem: how to precisely recognize success or failure of assembly task
  - Need to prevent defective products from shipping
- 2. Tuning problem: how to easily tune parameters of force control in short time
  - Everyone needs to easily tune parameters
  - > Or robots tune (learn) parameters by themselves?

### How to deal Recognition Problem (1/2)

- Difficult to precisely decide success or failure
  - Mostly, it is possible to distinguish success from failure by measuring (calculating) insertion depth.



Insertion Depth = Position.B - Position.A (calculated from joint angle sensors)



### How to deal Recognition Problem (2/2)

- Difficult to precisely decide success or failure
  - Sometimes, insertion depth is insufficient to clearly distinguish success from failure (see left-sided figure)
  - By introducing another feature (ex. peak of dF/dt), it becomes clearer to distinguish success from failure (see right-sided figure)



# How to deal Tuning Problem (1/3)

- How to easily tune parameters of force control
  - Smaller M<sub>k</sub> and D<sub>k</sub>, Faster the arm follow the direction of force (that means robots may finish insertion task faster)
  - > Too small  $M_k$  and  $D_k$  may lead contact unstable
  - > Too large  $M_k$  and  $D_k$  lead the task to failure
  - Currently, parameters M<sub>k</sub>, D<sub>k</sub> and K<sub>k</sub> are manually decided (tuned) by trial & error (manual tuning is time consuming)



YASKAWA Corporate R&D Center

# How to deal Tuning Problem (2/3)

- How to easily tune parameters of force control
  - > Automatic parameter tuning for each direction
    - 1. While making grasped work piece contact repeatedly,
    - 2. Search parameters so that force feedback can be good responses.
    - 3. End searching when settling time becomes almost minimum.



### How to deal Tuning Problem (3/3)

- Tuning problem: how to easily tune parameters of force control
  - > Experimental data of parameter vs. settling time



YASKAWA Corporate R&D Center

### Future Challenges and Directions (1/2)

- By solving the technical problems, Yaskawa expects that assembly robots will be widely spread into following manufacturing fields:
  - Step1. Automobile and its related parts
  - > Step2. Home electronics
  - Step3. Medical equipment
- Safety becomes more important, because assembly robots are expected to work with human workers in flexible manufacturing cells.

### Future Challenges and Directions (2/2)

- Industrial robots will be safer and as dexterous as human by force control and its related technologies
- Then industrial robots will expand out of factories
  - Farms
  - > Theme parks, Restaurants...Many possibilities will be tested



Ice cream serving robot





# Thank you for listening.



YASKAWA ELECTRIC CORPORATION Corporate R&D Center