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Interconnected systems have different:
• power and voltage levels
• structures
• measurement systems & fidelity

All systems must be 
studied carefully 



Distribution System Examples

Terrestrial Distribution Systems
[power.ece.drexel.edu]

DOE, NSF, Utilities, Vendors

Hybrid Electric Cars/Vehicles 
[www.honda.com]

IndustryShipboard Power Systems 
[www.navyleague.org]

ONR

Space Power Systems
[www.nasa.gov]

http://www.honda.com
http://www.navyleague.org
http://www.nasa.gov


What are they?

• Electric Power Distribution Systems: Terrestrial
– substations (< 115kV)
– distribution network within cities/towns
– secondary transformers/service lines (<500V)
– meters up to the customer wall



What are they?

• U.S. Properties:
– above-ground and underground
– grounded and ungrounded

(multi-phase: 2, 3, 4 and 5-wire systems)

– interconnections
• power electronic devices:

‒ source & motor interconnections
‒ network switches for reconfiguration

AC current of HVDC links, 6-pulse dc drives,
and adjustable speed drives [1]

[1] Task Force on Harmonics Modeling and Simulation, “Modeling  and 
simulation of the propagation of harmonics in electric power network,”
IEEE Trans. on Power Delivery, vol. 11, no. 1, pp. 452-465, Jan. 1996

– electronics
– DC motors: elevators

• Network
• Loads: 

– AC motors (air cond.)

AC   DC  AC



What are they?

423 buses, ~1000 nodes, 
842 customers: 5.6MW, 1.2 MV Ar

(only 3 phase buses drawn)

• Properties:

– large systems
(10,000+ nodes)

– normally operated in a 
radial manner 
(embed switches for loops)

408 buses, 767 customers: 6.3MW, 2.5 MV Ar
(only 3 phase buses drawn)

– limited # of real-time measurements
– uncertainty of loads and generation (stochastic)



What is emerging?

• Government (US states) programs:
– to encourage or mandate the growth of renewable energy
– Distributed Energy Resources (DER): 

• solar, wind, biomass, microturbines, ice storage, etc.
• load control

• Enabling technologies:
– advanced monitoring (M)
– control automation (   )
– cost manageable, information networks

PV Photovol taic Array

Sectional izing Switch

Generic Distributed Resource

R

Measurement Device

Line with Recloser

Substation

Transformer

Capacitor Bank

Load

Control lable Load



What is “Smart Grid”? 

• Expected/Desired Impacts:
‒ high penetration of DER 

‒ Distribution Automation for
• improved reliability

‒ reconfiguration
• improved efficiency

‒ voltage control

Power infrastructure 
(dist. and trans.) 

reliability & security information layer
(new)
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Societal Challenges (US)

• Energy Policy - no clear energy policy, historically

• Acceptance of Technology
– Load control: customer compliance not just $ based

• Access to Technology & Timing
– Potentially & unintentionally penalizes night shift workers, the

economically stressed & elderly à handled via regulation

• Access to Power Engineering Education
– Relatively few universities with power programs
– Even fewer have formal education in power distribution systems



Technical Problems

• We do not always have a baseline

• Integration: What are the system impacts of large numbers of new components?
– 2007: Denmark – high penetration of alternative energy sources into passive 

network causing network operation and stability problems 

• Fundamentals:  
– Time and space scaling issues 
– Mathematical foundations to subsequent models

• Optimization & Optimal Control:
– Large-scale, mixed-integer, non-linear optimization problems
– Real-time operation with unsynchronized measurements
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Technical Approach

• Unbalanced system analysis tools
– integrate arbitrary numbers of advanced components
– expand traditional system parameters
– static and dynamic estimation
– physically distribute simulations

• Applications/Simulation tools
– planning: optimal placement and replacement/retrofit

• economically ($) driven
– operation: control of new technologies

• customer driven
• shortened time-windows
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Load curtailment may be used to free-up additional capacity 

2tsb

1tsb

• Increases complexity
• Adds additional constraints 
• System benefits

Improving Reliability: 
Service Restoration with Load Curtailment



• Concept to Reality:
‒ “DER should reduce power outages”
‒ engineers currently working on expanding interconnection standards

Serviceable by DER
Improve system reliability by switch placement and network reconfiguration  

(Y . Mao & KM)

DER

Restorable by network

Fault

Improving Reliability: 
Switch Placement for Microgrids



AC/DC System Modeling & Analysis

• Unified AC/DC Equations
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Distributed Analysis & 
Control Partitioning 

( , , ) 0g x y u =

Energy resource power domains/commons

• Models: non-linear algebraic equations

• Create directed graphs

• Domain-Based Distributed Slack Bus 
Models 
‒ attribute load and losses 
‒ considers network 

characteristics/location
‒ significant $ impact 

(on both suppliers and distribution company)



DG’s Real Power Outputs  (Load and Losses) 
unit: kW
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• Traditional Models vs. Domain-Based Distributed Slack Bus Models
‒ between 3.7 to 4.5% difference



Distribution System Considerations

Common Considerations:

• Decisions based on 5% differences in load

• Often 5% or lower (2-3%) max imbalance tolerance at the substation 

• Capacity planning still must consider consumption (w/o DER)

• Assumption:
– Diversified load

• This changes with Smart Appliances & 
time-of-use rates (real-time pricing)

• Start-up currents (2-4 times higher than steady-state) à new constraints



Remarks

• Mandated installation of mixed energy sources will significantly
impact the distribution system and subsequently, the power 
system/grid as a whole

• Distributed intelligence can be effectively utilized to solve large-
scale problems

• Fundamental changes in the operating and planning are imminent 
and expected for the foreseeable future

Acknowledgements:
• M. Kleinberg, Y . Mao, S. Tong, X. Yang (grad & former grads)
• US Department of Energy & PPL Electric Utilities
• US Office of Naval Research
• US National Science Foundation



Distributed Energy Resources:      
e.g. PV (PhotoV oltaics)

Typical connection scheme for residential (1Φ) or commercial (1Φ – 3Φ) 
PV: highly distributed (<10kW), less so (<2MW)

Challenge: significant # of PV Generators do not have associated storage



Irradiance Binghamton 7-16
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Properties:
• 394 buses (1108 nodes) 
•199 loads: 28.2MW, 14.9 MV Ar
• 65 randomized locations 

Example: 394 bus system, New York



Simulated Results

Figure: Max % difference between phases of the substation power output 
Randomized PV locations (500 trials), 
65 (out of 107) Balanced Installations 

Remarks:
• Balanced PHV generators can increase system imbalance
• Most placements will not be balanced
• Customer decisions on PV generator locations


