

Integration of Smart Grid Enabling Technologies Within Power Distribution Systems

Karen Miu

Associate Professor Center for Electric Power Engineering Department of Electrical and Computer Engineering Drexel University Philadelphia, PA 19104, USA <u>miu@ece.drexel.edu</u>

June 5, 2011

- Overview
- Challenges
 - Societal Issues
 - Technical Problems
- How should we approach these problems?
- Remarks & Discussion

Overview

Interconnected systems have different:

- power and voltage levels
- structures
- measurement systems & fidelity

All systems must be studied carefully

Distribution System Examples

Terrestrial Distribution Systems [power.ece.drexel.edu] **DOE, NSF, Utilities, Vendors**

Space Power Systems
[www.nasa.gov]

Shipboard Power Systems
[www.navyleague.org]
ONR

Hybrid Electric Cars/Vehicles [www.honda.com] Industry

- Electric Power Distribution Systems: Terrestrial
 - substations (< 115kV)
 - distribution network within cities/towns
 - secondary transformers/service lines (<500V)
 - meters up to the customer wall

What are they?

• U.S. Properties:

- above-ground and underground
- grounded and ungrounded

(multi-phase: 2, 3, 4 and 5-wire systems)

- interconnections
- power electronic devices:
 - source & motor interconnections
 - network switches for reconfiguration

AC current of HVDC links, 6-pulse dc drives, and adjustable speed drives [1]

What are they?

- Properties:
 - large systems(10,000+ nodes)
 - normally operated in a radial manner
 (embed switches for loops)
 - limited # of real-time measurements
- Next Next
 - 842 customers: 5.6MW, 1.2 MV Ar (only 3 phase buses drawn)
 - uncertainty of loads and generation (stochastic)

- Government (US states) programs:
 - to encourage or mandate the growth of renewable energy
 - *Distributed* Energy Resources (DER):
 - solar, wind, biomass, microturbines, ice storage, etc.
 - load control

- Expected/Desired Impacts:
 high penetration of DER
 - Distribution Automation for
 - improved reliability
 - reconfiguration
 - improved efficiency
 - voltage control

- Overview
- Challenges
 - Societal
 - Technical
- How should we approach these problems?
- Remarks & Discussion

- Energy Policy no clear energy policy, historically
- Acceptance of Technology
 - Load control: customer compliance not just \$ based
- Access to Technology & Timing
 - Potentially & unintentionally penalizes night shift workers, the economically stressed & elderly à handled via regulation

Access to Power Engineering Education

- Relatively few universities with power programs
- Even fewer have formal education in power distribution systems

- We do not always have a baseline
- **Integration:** What are the *system* impacts of large numbers of new components?
 - 2007: Denmark high penetration of alternative energy sources into passive network causing network operation and stability problems

• Fundamentals:

- Time and space scaling issues
- Mathematical foundations to subsequent models

• Optimization & Optimal Control:

- Large-scale, mixed-integer, non-linear optimization problems
- Real-time operation with unsynchronized measurements

- Overview
- Challenges
 - Societal
 - Technical
- How should we approach these problems?
- Remarks & Discussion

• Unbalanced system analysis tools

- integrate arbitrary numbers of advanced components
- expand traditional system parameters
- static and dynamic estimation
- physically distribute simulations

• Applications/Simulation tools

- planning: optimal placement and replacement/retrofit
 - economically (\$) driven
- operation: control of new technologies
 - customer driven
 - shortened time-windows

Improving Reliability: Service Restoration with Load Curtailment

Breakers or sectionalizing switches operated to isolate faulted area

Improving Reliability: Service Restoration with Load Curtailment

Traditional restoration schemes limited by network spare capacity

Improving Reliability: Service Restoration with Load Curtailment

Load curtailment may be used to free-up additional capacity

Improving Reliability: Switch Placement for Microgrids

- Concept to Reality:
 - "DER should reduce power outages"
 - engineers currently working on expanding interconnection standards

Figure: A generic ac/dc system setup with a 3-phase variable frequency converter(X. Yang & KM)

• Unified AC/DC Equations

Distributed Analysis & Control Partitioning

• Models: non-linear algebraic equations

g(x, y, u) = 0

- Create directed graphs
- Domain-Based Distributed Slack Bus Models
 - attribute load and losses
 - considers network characteristics/location
 - significant \$ impact

(on both suppliers and distribution company)

Energy resource power domains/commons

 Traditional Models vs. Domain-Based Distributed Slack Bus Models – between 3.7 to 4.5% difference

Common Considerations:

- Decisions based on 5% differences in load
- Often 5% or lower (2-3%) max imbalance tolerance at the substation
- Capacity planning still must consider consumption (w/o DER)
- Assumption:
 - Diversified load
 - This changes with Smart Appliances & time-of-use rates (real-time pricing)
 - Start-up currents (2-4 times higher than steady-state) à new constraints

- Mandated installation of mixed energy sources will significantly impact the distribution system and subsequently, the power system/grid as a whole
- Distributed intelligence can be effectively utilized to solve largescale problems
- Fundamental changes in the operating and planning are imminent and expected for the foreseeable future

Acknowledgements:

- M. Kleinberg, Y. Mao, S. Tong, X. Yang (grad & former grads)
- US Department of Energy & PPL Electric Utilities
- US Office of Naval Research
- US National Science Foundation

Distributed Energy Resources: e.g. PV (PhotoV oltaics)

Typical connection scheme for residential (1 Φ) or commercial (1 Φ – 3 Φ) PV: highly distributed (<10kW), less so (<2MW)

Challenge: significant # of PV Generators do not have associated storage

Properties:

- 394 buses (1108 nodes)
- •199 loads: 28.2MW, 14.9 MV Ar
- 65 randomized locations

Simulated Results

% PV Penetration

Figure: Max % difference between phases of the substation power output Randomized PV locations (500 trials), 65 (out of 107) Balanced Installations

Remarks:

- Balanced PHV generators can increase system imbalance
- Most placements will not be balanced
- Customer decisions on PV generator locations