
Tools for Large-Scale SpatialTools for Large Scale Spatial
Simulation Design and Analysis

Johannes Gehrke

(Joint work with Tuan Cao, Al Demers, Nitin Gupta,
Christoph Koch Ben Sowell Marcos Vaz Salles Walker White Tao Zou)Christoph Koch, Ben Sowell, Marcos Vaz Salles, Walker White, Tao Zou)

Big Red Data Groupg p
Department of Computer Science, Cornell University

http://www.cs.cornell.edu/bigreddata/games

An Abundance of DataAn Abundance of Data

 Supermarket scanners  Scientific experiments
 Credit card transactions
 Call center records
 ATM machines

 Sensors
 Cameras
 Interactions in social ATM machines

 Web server logs
 Customer web site trails

 Interactions in social
networks

 Facebook, Myspace
 Podcasts
 Blogs
 Closed caption

 Twitter
 Speech-to-text translation
 Email Closed caption  Email

•Print, film, optical, and magnetic storage: 5 Exabytes (EB) of
new information in 2002 doubled in the last three yearsnew information in 2002, doubled in the last three years
[How much Information 2003, UC Berkeley]

Driving Factors: A LARGE Hardware
RevolutionRevolution

[Intel Corporation]

A small Hardware RevolutionA small Hardware Revolution

http://www.snm.ethz.ch/Projects/MicaZ
http://www snm ethz ch/Projects/TmoteSky

http://lecs.cs.ucla.edu/Resources/testbed/testbed-overview.html
http://www.snm.ethz.ch/Projects/TmoteSky

http://www snm ethz ch/Projects/Mica2Dot
http://www.snm.ethz.ch/Projects/Telos

• Moore’s Law
• In 1965, Intel Corp. cofounder Gordon Moore predicted that the

http://www.snm.ethz.ch/Projects/Mica2Dot

density of transistors in an integrated circuit would double every year.
• Later changed to reflect 18 months progress.

Driving Factors: Connectivity and BandwidthDriving Factors: Connectivity and Bandwidth

• Metcalf’s law (network usefulnessMetcalf s law (network usefulness
increases squared with the number of
users)users)

Gilder’s law (bandwidth doubles every 6• Gilder’s law (bandwidth doubles every 6
months)

DefinitionDefinition

Data mining is the exploration and analysis of g p y
large quantities of data in order to discover
valid, novel, potentially useful, and ultimately

d d bl dunderstandable patterns in data.

Example pattern (Census Bureau Data):
If (relationship = husband), then (gender = male). 99.6%

Why? Three ExamplesWhy? Three Examples

• Sensor networks
BIG Science Data• BIG Science Data

• Photos and videos

Talk OutlineTalk Outline

DataData
• Sensors

Science• Science
• Images
Techniques
• Declarative processingDeclarative processing

Flexible Decision Support (1999)Flexible Decision Support (1999)

Traditional
Procedural addressing of

individual sensor nodes; user
specifies how task executes, p ,
data is processed centrally.

TodayToday
Complex declarative querying and

tasking. User isolated from
“h h k k ” i“how the network works”, in-
network distributed
processing.

http://www.cs.cornell.edu/bigreddata/cougar/

Querying: ModelQuerying: Model
Time Value

12 82

Time Value

13 82

13 83 15 83

Time Value

13 82

15 84

Time Value

14 79
15 84

15 83

Time Value Time Value

13 82

15 83

13 80

16 83

Example QueriesExample Queries
Snapshot queries: In which area is the concentration of chemical X higher than

the average concentration?the average concentration?

SELECT AVG(R.sensor.concentration)
FROM Relation R
GROUP BY R.area
HAVING AVG(R.sensor.concentration) >

(SELECT AVG(R.sensor.concentration)
FROM Relation R
GROUP BY R.area)

Long-running queries: Notify me over the next hour whenever the
concentration of chemical X in an area is higher than my security threshold.

SELECT R sensor area AVG(R sensor concentration)SELECT R.sensor.area, AVG(R.sensor.concentration)
FROM Relation R
WHERE R.sensor.loc in rectangle
GROUP BY R.sensor.area
DURATION (now,now+3600)

Archival queries

GoalsGoals

• Declarative, high-level tasking, g g
• User is shielded from network characteristics

• Changes in network conditionsg
• Changes in power availability
• Node movement

• System optimizes resources
• High-level optimization of multiple queries
• Trade accuracy versus resource usage versus

timeliness of query answer

ChallengesChallenges

Technical:
• Scale of the system
• Constraints

• Power, communication, computation

• Constant change, uncertainty
from sensor measurements

http://www.fatvat.co.uk/2010/07/stop-traffic.html
from sensor measurements

• Distribution and decentralization

Application:
• Environmental monitoring
• Health Care
• Care for the elderly

Talk OutlineTalk Outline

DataData
• Sensors

Science• Science
• Images
Techniques
• Declarative processingDeclarative processing

http://www.geoeye.com/CorpSite/gallery/detail.aspx?iid=275&gid=51

1962 1972

1982 20021982 2002

http://www.naic.edu/

http://www.naic.edu/

Pulsar Surveys (2003)Pulsar Surveys (2003)

• Pulsars are rotating starsg
• Of interest are

• Millisecond pulsars
http://en.wikipedia.org/wiki/Pulsar

Millisecond pulsars
• Compact binaries

• Example:Example:
• Hulse-Taylor binary
• Used to infer gravitational waves in support g pp

of Einstein’s General Theory of Relativity
• Nobel price in physics in 1993

Pulsar Surveys (Contd)Pulsar Surveys (Contd.)

• Part of the ALFA surveys
• ~ 100 MB/s to disk
• ~ 1 PB for entire survey (3-5 yr @ 6-10% duty cycle)

• Requires coarsely parallel processing of raw• Requires coarsely parallel processing of raw
data in discrete, local data chunks

• processing time ~ 50-200x data acquisition time on single
processor (Intel 2 5 GHz 512k cached with 1GB ram)processor (Intel 2.5 GHz 512k cached with 1GB ram)

• Distributed processing (Cornell + 5 sites)

• Requires meta-analysis of data products of the
initial analysis
• Database and data mining research problems

ChallengesChallenges

• Data
• 14 TB every 2 weeks
• Shipped on USB-2 disk drives
• Need to archive raw dataNeed to archive raw data
• Need to make data products to the astronomy research

community

Processing• Processing
• Extremely processor intensive

• Currently just exhaustive search over a large parameter space
(d d)(periodicity, dispersion, time)

• Find new pulsars --- and other interesting phenomena

• More information:More information:
http://arecibo.tc.cornell.edu/hiarchive/

Talk OutlineTalk Outline

DataData
• Sensors

Science• Science
• Images
Techniques
• Declarative processingDeclarative processing

Image Collections (2010)Image Collections (2010)

www.flickr.com

www.facebook.com

Source: EPA at http://www.epa.gov/

The Need for Large-Scale Image
ProcessingProcessing
Photos:

billi h h d b l k• 5 billion – Photos hosted by Flickr
• 3000+ – Photos uploaded per minute to Flickr.
• 130 million – At the above rate, the number of photos uploaded per

monthmonth
• 3+ billion – Photos uploaded per month to Facebook.

VidVideo:
• 2 billion – The number of videos watched per day on YouTube.
• 35 – Hours of video uploaded to YouTube every minute.

186 Th b f li id th I t t t h i• 186 – The number of online videos the average Internet user watches in a
month (USA).

• 2+ billion – The number of videos watched per month on Facebook.
20 million Videos uploaded to Facebook per month• 20 million – Videos uploaded to Facebook per month.

The Power of a Data-Rich EnvironmentThe Power of a Data Rich Environment

Pictures courtesy of Noah Snavely
http://www.cs.cornell.edu/~snavely/

Statue of LibertyStatue of Liberty

Picture courtesy of Noah Snavely
http://www.cs.cornell.edu/~snavely/

Talk OutlineTalk Outline

DataData
• Sensors

Science• Science
• Images
Techniques
• Declarative processingDeclarative processing

Video GamesVideo Games

• Virtual environments
• High degree of

interactivity

All images copyright their respective owners.

Simulation GamesSimulation Games

• What are simulation
games?

“D ll H ”
The Sims 3 © Electronic Arts Warcraft © Blizzard Entertainment

• “Doll House” games
• NPCs have needs and desires.
• Objects can satisfy needs and desires.
• Player control via object placement.

• RTS games
Troops move and fight in real time• Troops move and fight in real time.

• Player multitasks between large number of units.
• Player control via a limited number of commands.

Simulation Game Design: NPCsSimulation Game Design: NPCs

• Non-Player Charaters (NPCs): Characters
not directly controlled by the player.
• Main actors in the game

• Doll House Games: Enticing a hungry NPC with some food• Doll House Games: Enticing a hungry NPC with some food
• Enemies controlled by the computer
• Allies indirectly controlled by the player

• RTS Games: Issuing commands to military units

Simulation games: All characters are NPCs• Simulation games: All characters are NPCs
• All character actions simulated by computer
• Player controls everything indirectlyPlayer controls everything indirectly

Data-Driven Game DesignData Driven Game Design

• Game design brings together many
di i lidisciplines
• Art, design, storytelling, music, computer science,

etc...
• Thus games are designed data-driven

• Game content is separated from game code
E l• Examples:

• Character data is kept in XML
• Character behavior is specified through scripting languages

• Engine is reusable

Content Creation in GamesContent Creation in Games

• Game software as artistic contentGame software as artistic content
• Gameplay programmers versus software

engineers versus designersengineers versus designers

The Role Of Scripting LanguagesThe Role Of Scripting Languages

Why scripting languages?y p g g g
• Easy environment for gameplay programmers

and designers
• Sandbox for creation of “fun”
• Make gameplay development fast and efficient

• User-created content (e.g., Second Life)
• Mods

• Half-Life  Counter-Strike

Why Is Scaling NPCs Hard?Why Is Scaling NPCs Hard?

• Example: Morale
• Battle between n knights and

n skeletons
• Assume knights that are

f id f k l tafraid of skeletons
• Morale inverse proportional to

number of skeletons in view

Scaling NPCs (Contd)Scaling NPCs (Contd.)

• Example: Morale
• Battle between n knights and

n skeletons
• Assume knights that are

f id f k l tafraid of skeletons
• Morale inverse proportional to

number of skeletons in view
E h k i ht t th 3 units• Each knight counts the
number of skeletons in his
view

3 units

2 units

• O(n) per unit to count visible
skeletons

• O(n2) to process all units Time per tick

1 unit

• Computation ≈ frame rate
e pe t c

Expressiveness vs PerformanceExpressiveness vs. Performance
• Expressiveness: The

range of behavior thatrange of behavior that
can be scripted (outside
the engine).

• As the number of NPCs
Medieval:
Total WarH

ig
h

• As the number of NPCs
increases, expressiveness
decreases.

• Neverwinter Nights 2

WarCraft III

r
of

 N
PC

s

Neverwinter Nights 2
• Each NPC fully scriptable

• WarCraft III
• Script armies, not NPCs

The Sims 2

Neverwinter
Nights 2

N
um

be
w

• Little NPC coordination
• Medieval: Total War

• No individual scripting at
all

Nights 2

Expressiveness
Low High

Lo
w

a

Scripting Simulations: Fish SchoolsScripting Simulations: Fish Schools

• Adapted from Couzin et
al., Nature 2005

• Fish Behavior
• Avoidance: if too close,

l h f h
α

ρ

repel other fish
• Attraction: if within

range attract other fishrange, attract other fish

One Approach: Scripting in SGLOne Approach: Scripting in SGL

• High-level languageHigh level language
• Very similar to Java

Programs specify behavior of individual• Programs specify behavior of individual
simulated entities

f h ff• Syntax enforces the state-effect pattern
• Highly efficient execution through

declarative processing

The State-Effect PatternThe State Effect Pattern

• Objects in the game have attributes. j g
• The attributes are either states or effects.

States Effects
id player x y health vx vy damage

1 1 12 342 100 0 0 01 1 12 342 100 0 0 0

2 1 43 12 100 0 0 0

3 2 123 90 95 0 0 0

Figure from Lineage II © NCSoft

The State-Effect PatternThe State Effect Pattern

• State attributes are read only variables that are y
updated only at the end of a tick.

• Effect attributes are temporary variables that
are used for intermediate computation during a
tick.

States Effects
id player x y health vx vy damage

1 1 12 342 100 0 0 01 1 12 342 100 0 0 0

2 1 43 12 100 0 0 0

3 2 123 90 95 0 0 0

Inside the Simulation EngineInside the Simulation Engine

A simulation tick has three phases:

States Effects
id player x y health vx vy damage

1 1 12 342 100 0 0 01 1 12 342 100 0 0 0

2 1 43 12 100 0 0 0

3 2 123 90 95 0 0 0

Inside the Simulation EngineInside the Simulation Engine

A simulation tick has three phases:
• Query Phase

• Read state variables
• Compute values for effect variables. Multiple assignments to an effect are

b d d fcombined using a commutative and associative aggregation function.

States Effects
id player x y health vx vy damage

1 1 12 342 100 10 3

12
251 1 12 342 100 -10 3

2 1 43 12 100 0 5 0

3 2 123 90 95 9 9 0

13

Inside the Simulation EngineInside the Simulation Engine
A simulation tick has three phases:

• Query Phase
• Read state variables.
• Compute values for effect variables. Multiple assignments to an effect are

combined using a commutative and associative aggregation functioncombined using a commutative and associative aggregation function.

• Update Phase
• Compute new values for state variables from the effects and previous state

variables.

States Effects
id player x y health vx vy damage

1 1 2 345 50 0 0 01 1 2 345 50 0 0 0

2 1 43 17 100 0 0 0

3 2 132 99 95 0 0 0

Phases of a TickPhases of a Tick

• QueryQ y
• Reads State  Writes Effects
• Each effect associated with Tick

State

associative-commutative combinator
function

• Effect writes order-independent

Query

Effects• Effect writes order independent

• Update
• Reads Effects  Writes State

Update

Reads Effects  Writes State
• Each agent only reads its own state

and effects

New State

• State writes order-independent

Another Example: Knights and SkeletonsAnother Example: Knights and Skeletons

class Skeleton {

…

public void run() {

// Compute # of skeletons and center of crowd

effect int c : sum, int sx : sum, int sy : sum;e ect t c : su , t s : su , t sy : su ;

foreach (Skeleton f : Extent<Skeleton>)({

if (isEnemySkeleton(f) && dist(x,y,f.x,f.y < range) {

c <- 1; sx <- f.x; sy <- f.y;

}

// If too many skeletons

if (c > morale) {if (c > morale) {

const int norm = (x-sx/c)*(x-sx/c)+ (y-sy/c)*(y-sy/c);

// Run in opposite direction

vx <- (x-sx/c)/norm; vy <- (y-sy/c)/norm;(/)/ ; y (y y/)/ ;

}

Another Example (Contd)Another Example (Contd.)
if (c > morale) {

. . .

} else if (c > 0 && cooldown == 0) {

// Find the nearest skeleton

effect Skeleton target : argmin (Skeleton s : e ect S e eto ta get : a g (S e eto s :
dist(x,y,f.x,f.y,t));

foreach (Skeleton f: extent<Skeleton>) {

if (isEnemySkeleton(f) { target <- r; }

}}

// Attack it if found.

if (target != null) { target.damage <- DMG_AMT; }

}}

}// end void run()

…

}// end class Skeleton

SGL ReviewSGL Review

• SGL is an imperative languagep g g
• Users write programs for individual NPCs.
• Expressive power is limited so that SGL scriptsExpressive power is limited so that SGL scripts

can be compiled to Monad algebra
• State-effect pattern
• Restricted looping

 D l ti i Declarative processing

Declarative Processing: An ExampleDeclarative Processing: An Example
public void run() {

// Compute # of skeletons and// Compute # of skeletons and
center of crowd

effect int c : sum, int sx : sum,
int sy : sum;

f h (Sk l fforeach (Skeleton f :
Extent<Skeleton>)({

if (isEnemySkeleton(f) &&
dist(x,y,f.x,f.y < range) {

c <- 1; sx <- f.x; sy <- f.y;

}

// If t k l t// If too many skeletons

if (c > morale) {

const int norm = (x-sx/c)*(x-
sx/c)+ (y-sy/c)*(y-sy/c);

// Run in opposite direction

vx <- (x-sx/c)/norm; vy <- (y-
sy/c)/norm;

}

Declarative Processing: An ExampleDeclarative Processing: An Example
public void run() {

// Compute # of skeletons and// Compute # of skeletons and
center of crowd

effect int c : sum, int sx : sum,
int sy : sum;

f h (Sk l fforeach (Skeleton f :
Extent<Skeleton>)({

if (isEnemySkeleton(f) &&
dist(x,y,f.x,f.y < range) {

c <- 1; sx <- f.x; sy <- f.y;

}

// If t k l t// If too many skeletons

if (c > morale) {

const int norm = (x-sx/c)*(x-
sx/c)+ (y-sy/c)*(y-sy/c);

// Run in opposite direction

vx <- (x-sx/c)/norm; vy <- (y-
sy/c)/norm;

}

Declarative Processing: An ExampleDeclarative Processing: An Example
public void run() {

// Compute # of skeletons and// Compute # of skeletons and
center of crowd

effect int c : sum, int sx : sum,
int sy : sum;

f h (Sk l fforeach (Skeleton f :
Extent<Skeleton>)({

if (isEnemySkeleton(f) &&
dist(x,y,f.x,f.y < range) {

c <- 1; sx <- f.x; sy <- f.y;

}

// If t k l t// If too many skeletons

if (c > morale) {

const int norm = (x-sx/c)*(x-
sx/c)+ (y-sy/c)*(y-sy/c);

// Run in opposite direction

vx <- (x-sx/c)/norm; vy <- (y-
sy/c)/norm;

}

Declarative Processing: An ExampleDeclarative Processing: An Example
public void run() {

// Compute # of skeletons and// Compute # of skeletons and
center of crowd

effect int c : sum, int sx : sum,
int sy : sum;

f h (Sk l fforeach (Skeleton f :
Extent<Skeleton>)({

if (isEnemySkeleton(f) &&
dist(x,y,f.x,f.y < range) {

c <- 1; sx <- f.x; sy <- f.y;

}

// If t k l t// If too many skeletons

if (c > morale) {

const int norm = (x-sx/c)*(x-
sx/c)+ (y-sy/c)*(y-sy/c);

// Run in opposite direction

vx <- (x-sx/c)/norm; vy <- (y-
sy/c)/norm;

}

Declarative Processing: An ExampleDeclarative Processing: An Example
public void run() {

// Compute # of skeletons and// Compute # of skeletons and
center of crowd

effect int c : sum, int sx : sum,
int sy : sum;

f h (Sk l fforeach (Skeleton f :
Extent<Skeleton>)({

if (isEnemySkeleton(f) &&
dist(x,y,f.x,f.y < range) {

c <- 1; sx <- f.x; sy <- f.y;

}

// If t k l t// If too many skeletons

if (c > morale) {

const int norm = (x-sx/c)*(x-
sx/c)+ (y-sy/c)*(y-sy/c);

// Run in opposite direction

vx <- (x-sx/c)/norm; vy <- (y-
sy/c)/norm;

}

Code OptimizationsCode Optimizations

• Indexingg
• Construct an index in time o(n2)
• Lookup aggregate value through index nested-loops

join

S li l ith• Sweep-line algorithms
• Compute all aggregate values in time o(n2) at the

beginning of each tickbeginning of each tick

Simulations: RequirementsSimulations: Requirements
High-level programming Master/

Load BalancerWritten
• SGL

Performance
• Compiles into C++,

Generated
Framework

declarative processing

Scalability
• Automatic parallelization,

Network

Driver Extent
TablesSchema

completely transparent
to the programmer

Cost-effectiveness
h l d

SE Code
(SGL) Visualizer

• Runs in the cloud
• Amazon EC2; get 1000 nodes for one hour for <$100

Automatic fault-tolerance
• Main-memory checkpointing techniques

Example 1: FishExample 1: Fish

[Couzin 2005]

http://webscript.princeton.edu/~icouzin/website/collective-motion-and-decision-making-in-animal-groups/

Indexing of Fish SimulationIndexing of Fish Simulation

Load Balancing: FishLoad Balancing: Fish

 16-node with load balancing turned on

56

g
 Fish simulation of two independent schools that swim in opposite

directions

Example 2: TrafficExample 2: Traffic

Source: EPA at http://www.epa.gov/

Example 2: Traffic (Contd)Example 2: Traffic (Contd.)
……
public void laneChange() {

// get lead gap// get lead_gap
effect number lead_gap : min;
foreach Vehicle v in Extent<Vehicle> {

if (v.link = this.link && v.lane = this.lane &&
v.position > this.position) p p)

lead_gap <- v.position – this.position
– v.length/2 – this.length/2;

}
……

// get average speed// get average_speed
effect number num_cars : sum……
effect number total_speed : sum……
effect number average_speed = total_speed / num_cars;
// compute utility// compute utility
effect number utility : priority
……

if (this.lane – 1 > 0) // get left_lead, etc ……
if (this lane + 1 < getNumLane(this link))if (this.lane + 1 < getNumLane(this.link))

// get right_lead, etc ……
// set laneChange based on utility ……

}

Traffic: ScalabilityTraffic: Scalability

• Scale up of problem size with number of nodes• Scale up of problem size with number of nodes

• Nearly linear scalability

Traffic: Scalability (Contd)Traffic: Scalability (Contd.)

 Scale up of problem size with number of nodes Scale up of problem size with number of nodes

 Nearly linear scalability

Summary: Declarative ProcessingSummary: Declarative Processing

Novel way to program and process digital games y p g p g g
and simulations

Main idea in this talk: Declarative processing

Much more: Automatic fault-tolerance, processing
in the cloud, statistics collection, abstractions for
building social games

One Remark: CreativityOne Remark: Creativity

• Engineers are g
creative!

• Games as an
introduction to
programming.

• Games as a way to
express your
creativitycreativity.

Meta MessageMeta Message

• Tools for data analysis are growing rapidlyTools for data analysis are growing rapidly
at a fast pace

• Ideas from database systems have wide
applicability beyond managing dataapplicability beyond managing data

• Capability of tools  level of creativity

Let’s Play!

Questions?

johannes@cs.cornell.edu
http://www.cs.cornell.edu/johannesp // /j

Thank you: IARPA, National Science Foundation, Air Force Office of
Scientific Research New York City Metropolitan Transportation CouncilScientific Research, New York City Metropolitan Transportation Council,
Microsoft, Yahoo!, Intel, Google

