

Next Generation Wireless Communications: TELEHEALTH

Urbashi Mitra Professor University of Southern California Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering

The KNOWME Project: http://knowme.usc.edu

M. Annavaram, Adar Emken# , S. Ghosh, Sangwon Lee, M. Li,
 N. Medvidovic*, U. Mitra, S. Narayanan, V. Rozgic,
 D. Spruijt-Metz[#], G. Sukhatme*, G. Thatte, H. Vathsangam

University of Southern California Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering *Computer Science Department, Viterbi School of Engineering #Preventive Medicine, Keck School of Medicine

m-Health Opportunities

- World population ~ 7 billion
 - Number of cell phones ~ 5 billion
 - More than 80% population within reach of cell tower
- Tremendous opportunities for prevention and treatment of health conditions *in difficult to reach, at-risk and under-served individuals worldwide*

Tremendous opportunities in fact for EVERYONE

Wireless Body Area Sensing Networks

• Novel sensing network for holistic assessment of "state"

Jovanov et al. Journal of NeuroEngineering and Rehabilitation 2005

- databases
- social networking

Continual Feedback

- Novel sensing network for holistic assessment of "state"
 - motion, physical activity, geospatial context
 - metabolic information
 - cognitive, emotional data
 - SpO2 &

- user initiated data (SMS, speech notes, images/videos) Motion sensor Wirelessuccommunications

- metabolic health relearch **Glue** engineering methods for assessment/cognition
- wireless communications
- sensor networks and actuated systems
- computer architecture
- databases

Jovanov et al. Journal of NeuroEngineering and Rehabilitation 2005

ECG & Tilt sensor

Body

Area Network

> Motion sensors

social networking

KNOWME 3 tier Architecture

- combine health sensors with mobile phone
 - metabolic: ACC, OXI, ECG
 - emotional: GSR

- location: GPS
- user initiated: SMS, Tweets, video/image/voice tags

Three-Tier KNOWME Architecture

Sensor Overview

- External Sensor with Bluetooth capability
 - Heart rate monitoring
 - Pulse oximeter
 - EmSense[®] headset physiological sensors blinking, breathing, motion and heart activity, TBD (in lab evaluation)
 - 4 tri-axial accel units MICROSTRAIN
- N95 Internal Sensors
 - Accelerometers
 - GPS
 - Audio/Video/Picture tags
 - Cell tower based location sensors _

Mobile Client Design

What are the issues?

- Network to Application
 - Changing the stack?

- Research horizon
 - Short term, medium term, long term

Energy constraints are different!

Cellphones are not biometric signal processors (yet)

Method	Energy(J)	Note
QRS Detection	17.045	Pan and Tompkins
Encryption	0.537	AES-128bit
Data Compression	19.670	GZIP CR 3:1

 C_{TX}

Sensor Data & Transmission Costs

- Nokia N95 cellphone fusion center
 - Alive Technologies ACC and ECG (chest strap) and mobileinternal Accelerometer | Pulse oximeter not used
 - Cost of Bluetooth measurements >> Cost of Nokia ACC

$$C_{\text{NOK}} = \frac{1}{10} C_{\text{ACC}}; C_{\text{ACC}} = C_{\text{ECG}}$$

• We also consider transmission cost, C_{TX}

$$=\sum_{k=1}^{K}C_kN_k$$

Sensor Status Power Connector Indicator Buttor

From Sensor Measurements to Features

• Accelerometer (ACC)

From Sensor Measurements to Features

• Electrocardiograph (ECG)

- Features extracted from data
 - Used to develop hypotheses in training
 - Compared to models in testing for activity-detection

High Performance Activity-Detection

- sophisticated detector structures
 - support vector machines
 - feature fusion methods
- novel feature development: cepstral, time-domain

Nonlinear Decision Regions

Decision regions for bivariate Gaussians for six activities

 Distinct means and covariance matrices for each subject | personalized training

Different features "good" for detecting different states

• Certain sensors can better discriminate between specific sets of activities

When to use what sensor/feature?

- Compute optimal allocation of samples to minimize probability of error of multiple hypothesis testing problem
 - Constrain total number of samples received

- Computing exact probability of error is intractable for general Gaussian model
 - Instead compute upper bound using pair-wise error probabilities
 - Incorporates probability of next state given current state

Data Collection | Numerical Results

- Experimental Procedure
 - Each activity performed for 7 minutes + 20 min free living
 - Protocols modified from [Puyau02] and [McKenzie91]

Current data set:

- 20 overweight minority youth participants
- [ThatteTSP] simulations based on (6 male, 6 female; ages range from 12-17; BMI ranges from 24.3-51.3)
- Simple cases considered; easier to visualize
 - Methods directly applicable to more complex scenarios

lying sitting sitting+fidgeting standing standing+fidgeting playing Wii slow walking brisk walking running

Optimal vs. Approximately Optimal Allocation

- Low-complexity solution (o) near combinatorial search solution (o)
 - $P_{\text{equal}}(e) = 0.138$ $P_{\text{optimal}}(e) = 0.017$

~ order of magnitude improvement

OSI Stack

PAST

NOW

Life is not static

Life is not static

How to handle state explosion?

States:

- Physical activity states
- Contextual states
- Emotional states
- ACTUATION states
- Markov Decision
 Process

Compressed Sensing: a SOLUTION?

- Reduce observations via randomized projection (compress)
- Efficiently estimate a few parameters (sparse)

$$y = \Phi f = \Phi \Psi x = Ax$$
projection/sampling
field/signal basis

Compressed Sensing for Biometric Signals

- Biometric signals have a lot of structure
 - ECG, SpO2, temperature, blood pressure, speech
 - Use novel compression techniques

What about Networks?

a cognitive radio example

- N mutually interfering users
- Random arrivals
- Buffer of size B packets
- Finite retransmission protocol (F = maximum number of transmissions)

Simulations: N = 2, B = 5, F = 4 \rightarrow 1681 states

Compressed Sensing vs. Classical Learning

- New algorithm
 performed with each new
 sample
 - unobserved states removed from matrices
- Fast convergence
 - Transition probability matrix and cost functions are ESTIMATED from samples
- Standard learning converges very slowly
- We can apply these approaches to physical state tracking

How do we integrate?

- Universal compressed sensing?
 - Biometric signal estimation
 - Physical state estimation
 - Network state estimation
- Eventually
 - Biometric signal control?
 - Physical state control?
 - Network state control!
- Is there a new wireless network needed?
 - Does a holistic approach help in dealing with the bottleneck?

Summary

- Significant cell phone subscription rate offers unique opportunities for wireless/tele-health
- Energy consumption of all devices a major concern for the collection of longitudinal data
- Network (re)design questions?
 - Application to networking/physical layer connections

Summary

- Significant cell phone subscription rate offers unique opportunities for wireless/tele-health
- Energy consumption of all devices a major concern for the collection of longitudinal data
- Network (re)design questions?
 - Application to networking/physical layer connections

• ``it's like having a doctor in your pocket''

personalized engineered technology systems

