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Synthetic biology: Re-programming vs. re-assembling

Michael Specter: A life of its own. The New Yorker

Laboratory for Bioinformatics, Kyushu University



Synthetic biology: Re-assembling

Schwille & Diez: “Synthetic biology of minimal systems”
Critical Reviews in Biochemistry and Molecular Biology 44(4), 223 (2009) 

PNAS 100, 4521 (2003)

Protein-coated vesicle

Actin tail

Platinum-gold nanorods 
in hydrogen peroxide 

PRL 99,178103 (2007)

R. Feynman: “What I cannot create, 
I do not understand.”

Theriot & Portnoy, 
Theriot lab website

50 µm
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Movie extracted from: Alain Viel, Robert A. Lue, and John Liebler/XVIVO “The inner life of a cell”
BioVisions at Harvard University

Fascinating building blocks: Kinesin motors and microtubules



Speed: 800 nm/s at 1 mM ATP

Objective
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spacers
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Flow in

Flow out
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KinesinCasein
Glass

Force: 5 pN per Kinesin Fluorescence microscope

Molecular Shuttles: 

Nanoscale transport systems assembled 

from kinesins and microtubules
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Molecular shuttles image surfaces as self-propelled probes



20 µm

500 frames
observed 
in 2500 s

Nano Letters 
2, 113 (2002)

Molecular shuttles image surfaces as self-propelled probes

Kerssemakers, Diez et al.
Small 5, 1732 (2009)

Imaging by scanning:



50 µm

1 s movie  
= 100 s 
real time

Biotinylated 
microtubules

partially coated with 
streptavidin 

=
“Sticky microtubules”

Emergent behavior: Self-assembly by active transport 
results in non-equilibrium structures



Scientific American
March 2000, p. 72-9
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PNAS 2002, 99:9645
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Design of Molecular Machines

1. Introduction to Design
2. Materials and Processes
3. Load Determination
4. Stress, Strain, and Deflection
5. Static Failure Theories
6. Fatigue Failure Theories
7. Surface Failure (Wear)
8. Design Case Studies
9. … 16. Bearings, Gears, etc.

“There are three ways to fail: 
obsolescence, breakage, 

or wearing out”

“Fatigue failures always 
begin at a crack.”

Microtubule

KinesinCasein
Glass

Energy flow:

Chemical energy (ATP) 

enters the system

and is converted to 

mechanical work and heat.



Wear of Molecular Shuttles

Inactive motors; t = 1 h Inactive motors; t = 4 h

Active motors; t = 1 h Active motors; t = 4 h

Degradation (shrinking, breaking) is proportional to traveled distance.   

Av Length fit.tif

No motion

70 nm/s

190 nm/s
350 nm/s470 nm/s
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Directed by: George Bachand Produced by: Sandia National Lab
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With support from the DARPA Biomolecular Motors program

Smart dust sensor for remote detection of chem/bio agents
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Fischer, Agarwal & Hess, Nature Nano 4, 162 (2009)

Smart dust sensor for remote detection of chem/bio agents
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A biomimetic, self-pumping membrane

In-kook Jun & H. Hess, Advanced Materials (DOI: 10.1002/adma.201001694)

Harvesting of chemical energy, close coupling of energy conversion with transport

Microscale integration of chemical to mechanical energy conversion 

in an active composite material made of metals and plastic



In-kook Jun & H. Hess, Advanced Materials (DOI: 10.1002/adma.201001694)

A biomimetic, self-pumping membrane
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Macro: Well-defined, static, 
predictable, intuitive

Micro&Bio: Complex, 
dynamic, unpredictable?

Mechanical engineering at the molecular scale

S R
Macro: Acoustic, 
electromagnetic

Micro/Bio: Molecular, 
mechanical, parallel

Communication, information processing 
and emergence
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Molecular shuttle coatings: An active and soft “metamaterial”



The future is more and smaller motors!

Example:

Car (1925) – 1 motor
1 m in size

Car (2010) – 1 gasoline engine,
~100 electric motors to adjust various 

components
1 cm – 1 m in size

Car (2095) – 10,000 motors
100 µm – 1 m in size

)



Diffusing molecules as messengers require 
either diffusion barriers to address specific recipients 

or a swarm-based approach.

r*2 = KmD/A

Nano Letters 8, 221 (2008)

Increasing localization Decreasing activation

Communicating with individual molecular shuttles?



1 s movie  = 
50 s real time

5 µm

Nanoscale force measurements

Frupture= f(v)

Streptavidin

Biotin



50 nm/s 175 nm/s 450 nm/s

Cargo loading by molecular shuttles
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Number of Biotin–Streptavidin Interactions: Sticking Probability:

Modeling of process requires engineering AND chemistry;
Optimum velocity results from “glue-like” bond

Biology exploits 
complex molecular interactions 

to achieve 
complex nanoscale functionalities.

Nano Letters 9, 1170 (2009)



Experiment:           98%                                88%
1%                              12%

91.4 ± 0.9 %

8.6 ± 0.9 %

99.9 ± 0.1 %

0.1 ± 0.1 %

M.G.L. van den Heuvel et al., 
Nano Letters 5, 1117 (2005)

10 µm

100 ms timesteps
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Trajectory persistence length L p:

Measurement: Lp = 0.1 mm

Takahiro Nitta, et al.: 
“Simulating 

molecular shuttle 
movements”, 
Lab on a Chip 
6, 881 (2006) 

Computer-Aided Design of guiding structures 



100 ms timesteps

Takahiro Nitta, et al.
“Evolutionary 

optimization of 
guiding track designs 
…”, Proceedings of  

µTAS 2009

New record among simulated 
shapes: 90% rectification

Roulette rule and 1-
point crossover

Rr & 2-
point co

Tournament rule 
& 1-point co

Tr & 2-
point co

Removing the need for molecular intuition: Design by ES



UVUV

DM – NPE – ATP  
1 s movie = 

300 s real time

5 µm

UV-light releases,
Hexokinase 

sequesters ATP

Communicating with molecular shuttles



patterned exposure to UV light
rapid diffusion of ATP
delocalized movement of shuttles

patterned exposure to UV light
diffusion + sequestration of ATP
localized movement

D(ATP) =  
400 µm2/s

50 µm
no HK, time 360x 5000 units HK, time 3600x

Communicating with individual molecular shuttles?


