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Synthetic biology: Re-programming vs. re-assembling

Design of artificial genetic circuit based on synthetic biclogy
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Synthetic biology: Re-assembling

R. Feynman: “What | cannot create,
| do not understand.”

- Theriot & Portnoy,
Theriot lab website

Platinum-gold nanorods
in hydrogen peroxide

PNAS 100, 4521 (2003)

Schwille & Diez: “Synthetic biology of minimal systems”
Critical Reviews in Biochemistry and Molecular Biology 44(4), 223 (2009)

PRL 99,178103 (2007)




Hybrid devices to explore design principles and applications
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Integration (physical and functional)

Smart Dust biosensors
Soft metamaterials

(Molecular engines)

Mechanical engineering at the molecular scale

Force measurements
Glue-like bonds
Wear and fatigue

Computer-aided design

Transitioning to microscopic
synthetic devices

Self-pumping membranes




Fascinating building blocks: Kinesin motors and microtubules

Ttal Videas (

htip:/feffeeh

Movie extracted from: Alain Viel, Robert A. Lue, and John Liebler/XVIVO “The inner life of a cell”
BioVisions at Harvard University



Molecular Shuttles:
Nanoscale transport systems assembled

from kinesins and microtubules

Force: 5 pN per Kinesin Fluorescence microscope
- A/Microtubule Objective
e Flow out
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Speed: 800 nm/s at 1 mM ATP Flow in




Molecular shuttles image surfaces as self-propelled probes
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Molecular shuttles image surfaces as self-propelled probes

500 frames Kerssemakers, Diez et al.
observed Small 5, 1732 (2009)
in 2500 s

20 mm

Nano Letters
2,113 (2002)

Imaging by scanning:

v




Emergent behavior: Self-assembly by active transport
results in non-equilibrium structures

Biotinylated
microtubules
partially coated with
streptavidin

“Sticky microtubules”

1 s movie
=100 s
real time

50 mm




Emergent behavior
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Design of Molecular Machines

i 1. Introduction to Design
EAEAS&']-II{INE‘ 2. Materials and Processes “Fatigug failures always
o pl:::gzated ~ 3. Load Determination begin at a crack.”
- ; 4. Stress, Strain, and Deflection

LA 5. Static Failure Theories

| :F{E ;;: 1 6. Fatigue Failure Theories “There are three ways to fail:

f : 7. Surface Failure (Wear) obsolescence, breakage,
Robert L. Norton = 8. Design Case Studies or wearing out”

9.

... 16. Bearings, Gears, etc.

Energy flow:
Chemical energy (ATP)

enters the system

and is converted to

Glass X | | 4 mechanical work and heat.
Casein Kinesin



Wear of Molecular Shuttles

No motion

70 nm/s

190 nm/s
470 nm/s 350 nm/s

Average Length {pm}

T - 0 300 600 900 1200 1500

Active motors;t=1h Active motors;t=4h Glided Distance (um)

Degradation (shrinking, breaking) is proportional to traveled distance.
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Smart dust sensor for remote detection of chem/bio agents

Directed by: George Bachand Produced by: Sandia National Lab

In collaboration with: Viola Vogel, ETH Zurich
Banahalli Ratna, Naval Research Lab
Peter Satir, Albert Einstein College of Medicine
Henry Hess, University of Florida

With support from the DARP A Biomolecular Motors program




Smart dust sensor for remote detection of chem/bio agents

Analyte Capture

20 pm .
I 800 um Analyte Detection

Fischer, Agarwal & Hess, Nature Nano 4, 162 (2009)




Smart dust
Sensor:

1 nM streptavidin
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A biomimetic, self-pumping membrane

Active Transport
membrane protein

Low Conc ® pumps

-
g e _rrref

wubgw\m LY L

. ...
ADP + Pi
' ®0 09
High Conc

Harvesting of chemical energy, close coupling of energy conversion with transport

—

Microscale integration of chemical to mechanical energy conversion

In an active composite material made of metals and plastic

In-kook Jun & H. Hess, Advanced Materials (DOI: 10.1002/adma.201001694)




A biomimetic, self-pumping membrane

124 © flow rate o current Pt — Au
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In-kook Jun & H. Hess, Advanced Materials (DOI: 10.1002/adma.201001694)



Hybrid devices to explore design principles and applications

Communication, information processing Mechanical engineering at the molecular scale
and emergence

Macro: Acoustic,

electromagnetic

Micro/Bio: Molecular,
mechanical, parallel

Macro: Well-defined, static, Micro&Bio: Complex,
predictable, intuitive dynamic, unpredictable?
Integration (physical and functional) Transitioning to microscopic

synthetic devices
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Molecular shuttle coatings: An active and soft “metamaterial”




The future is more and smaller motors!

Example: -
O Single molecules ”
Muscles
Car (1925) - 1 motor - Linear actuators
1 min size Winches
— Rockets
Car (2010) — 1 gasoline engine, < Molecular motors
~100 electric motors to adjust various 'F-;_ .
components Z o0
1cm—1min size 2 )
Car (2095) — 10,000 motors = "
100 mm — 1 m in size =
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Communicating with individual molecular shuttles?
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Increasing localization =» Decreasing activation

Diffusing molecules as messengers require
either diffusion barriers to address specific recipients
or a swarm-based approach.

Nano Letters 8, 221 (2008)
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Nanoscale force measurements

kinesin
AVAL AL MMM AN :
|:rupture_ f(V)
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> S ¥ Streptavidin

cantilevered

1 s movie =
50 s real time

5mn




Cargo loading by molecular shuttles

Biotinylated
nanosphere
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Modeling of process requires engineering AND chemistry;
Optimum velocity results from “glue-like” bond

Number of Biotin—Streptavidin Interactions: Sticking Probability:
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Biology exploits

complex molecular interactions

to achieve

complex nanoscale functionalities.

Nano Letters 9, 1170 (2009)



Computer-Aided Design of guiding structures

Trajectory persistence length L ;:

® V,, Dto

(cos{Dg (Dt)]) = expg 2L —
Measurement: Lp = 0.1 mm

Rectification of microtubule motility in a gold nanostructure

M.G.L. van den Heuveal*
C.T. Buicher*
R.M.M. Smeefs®

. Diex*"
C. Dekker

"Kavh Instituie of Nanoscience,
Dkt University of Technology,
Db, The Netherlands

“Max Planck nstitute of Molecular
Cell E-Iarngy and Genetics
Drésden, Gern Ty

Masie is 10 x dccelerated
Fleld of view: B0 wm X &1 um

M.G.L. van den Heuvel et al.,
Nano Letters 5, 1117 (2005)

Experiment:

98%
1%

T akahiro Nitta, et al.:
“Simulating
molecular shuttle
movements”,
Lab on a Chip
6, 881 (2006)

91.4+0.9 %

86+0.9%

88%
12%



Removing the need for molecular intuition:

Design by ES

PLDDEF

15t generation

2Hth generation

200th generation

Takahiro Nitta, et al.
“Evolutionary
optimization of
guiding track designs
...”, Proceedings of

nTAS 2009
New record among simulated
shapes: 90% rectification
Roulette rule and 1- Rr & 2- Tournament rule s Tr & 2-
point crossover " point co 1 [ & 1-point co point co
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Communicating with molecular shuttles

OH O©OH

ATP

UV-light releases,
Hexokinase
sequesters ATP

5mn

1 s movie =
300 s real time




Communicating with individual molecular shuttles?

patterned exposure to UV light
rapid diffusion of ATP
delocalized movement of shuttles

D(ATP) =
o 400 nm?/s

patterned exposure to UV light
diffusion + sequestration of ATP
localized movement
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