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Unmanned Aircraft Systems (UAS)
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Information + Transport (Computers vs. Cars?)
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Dissenting Commentary…



Introduction
• Motivation:  

– UAS can fly at *substantially* reduced cost, emissions, noise
– Autonomous aircraft require less infrastructure
– Pilots may have no better (or less) relevant information than the 

automation à automation can be more “certain” of its decisions than 
can human pilots à autonomous FMS can be safer

• Objective:  This presentation overviews requirements, challenges, & 
progress toward certifiable (trusted) and autonomous UAS Flight 
Management Systems (FMS)

• Outline:  
– Requirements & challenges for safe UAS FMS
– Loss-of-control avoidance via “adaptive” FMS
– Case study:  Adaptive FMS applied to US Airways Flight 1549
– Wanted:  UAS in the NAS (National Airspace System)



UAS Safety:  Setting the Context



Certifiable Autonomous FMS == Safe FMS



Commonly Observed UAS Issues
• UAS are designed to be managed from a ground control station

• Loss of Communication Link
– Lost link requires safe default operation, including sense and avoid
– Confusion over controlling entity and compromised operator 

situational awareness can result

• UAS Component Failures
– Powerplant, flight control, and communications equipment failures 

are prominent causes of UAS incidents.
– Lower-cost components result in lower reliability.

• A UAS FMS with the ability to autonomously & safely 
manage lost link and failure/damage situations will 
address both of these concerns
– This translates to a UAS FMS that avoids “loss-of-control” and that 

respects the FARs at all times



MQ-8 Fire Scout (Aug. 2010)



Our Focus:  Avoid Loss-of-control (LOC)

Traditional Flight Envelope Example [MCC10].

Damaged Transport Flight Envelope
(Green = stable, Blue = stabilizable)



LOC Avoidance with Damage/Failures



Landing Site Selection 
(autonomy, not automation)
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Real-time Flight Planning:  
Augmented 3-D Dubins Paths
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Turning Dubins Vehicle (TDV)



Trim State (Envelope) Discovery

• Dynamics of a damaged 
aircraft are not known 
immediately post-incident.

• Achievable trim states and 
flight envelope boundaries must 
be discovered while the aircraft is 
flying.

• We integrate multiple local 
approximations of the envelope 
to “learn” a sufficient set for 
landing
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Trim State Discovery:  Guidance

V,, γψ&



Trim State Discovery Example
• F-16 with aileron jam at 10°
• Initial state:  
• Goal state:  ft/sec 250,3,0 <°−== Vγψ&

ft 10000ft/sec, 400,9.2,5.15 ==°=°= hVγψ&



[Autonomous] 
Emergency Flight Management:  A Case Study



Flight 1549 Questions…

• What if an adaptive/emergency flight planning decision 
had been available for Flight 1549?
– Was a runway landing feasible?
– What time constraints were present?

• Would our C-based adaptive flight planner successfully 
generate solutions for the Flight 1549 situation without 
modification (except for A320 glide parameters)?

• What are the implications of these results?



Flight 1549 3-D Flight Profile

• Actual Flight 1549 
trajectory shown

• Labeled point is where 
our analysis begins

• Previous point is 
maximum altitude 
(3046’)

• GPS points recorded 
every 4 sec

• Our cases:  (t+4) 
(labeled), (t+8), (t+12)
– Subsequent points 

cannot reach runway
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Emergency Flight Planning Results
• Footprint analysis indicated LaGuardia (LGA) runways were reachable
• Fast response was critical to success 

– After t+12 sec, LGA was not reachable
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Flight 1549: Answering the Questions



Wanted:  UAS in the NAS  

(http://en.wikipedia.org/wiki/Airspace_class_(United_States)

http://en.wikipedia.org/wiki/Airspace_class_(United_States)


Real risk of “Legacy Operations” Only!!!



UAS in the NAS:  Additional Barriers

• Technological:
– Acceptable risk without triply-redundant systems (for small UAS)
– Safety certification of miniaturized, low-cost components/systems
– Validation/verification:  onboard automation, operator situational 

awareness/responsiveness, network-centric operations

• Psychological:
– Fear of flying on (or being near) an aircraft with no human pilot
– Invasion of privacy concerns
– Pilots:  Lost job, loss of comfort (coordination with a computer?)

• Legal:  “Pilot error” is more palatable than “automation error”



Conclusion:  Flight in NextGen & Beyond



Achieving the autonomous UAS FMS goal  


