Cool Robots: Scalable Mobile Robots for Instrument Network Deployment in Polar Regions

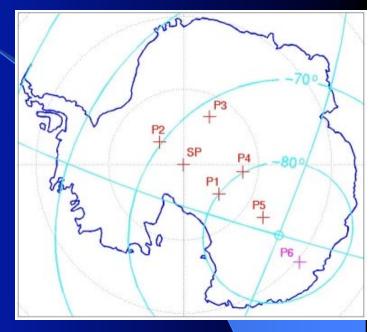
Laura Ray, Alex Price, Alex Streeter, Dan Denton Thayer School of Engineering, Dartmouth College

U.S. Army Cold Regions Research and Engineering Laboratory

National Academy of Engineering Tenth Annual Symposium on Frontiers of Engineering September 8-11, 2004

Antarctic Plateau

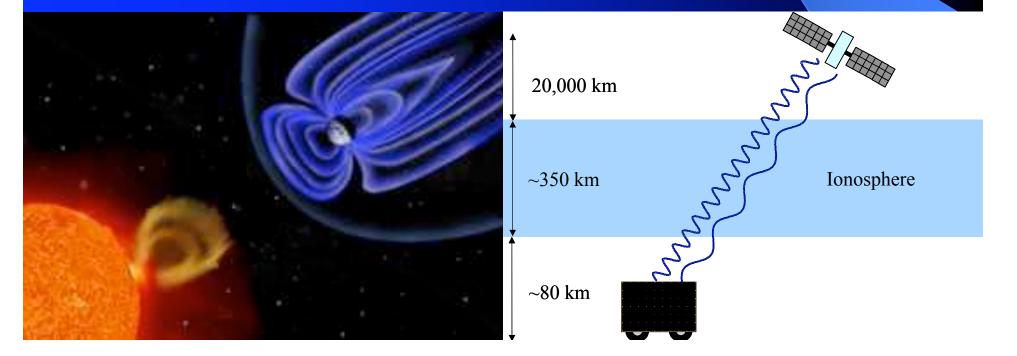
- Area >5M km², high altitude plateau
- -40° to -20° C in summer (Nov-Feb)
- Winds avg. 2 m/s, max 20.5 m/s
- Firm snow
 - <50 mm annual precipitation</p>
 - Flat, w/ wind-sculpted sastrugi



Science on Antarctic Plateau

• Field Science

- Aeronomy and astrophysics: "window to space"
- Soil and snow biology and ecology
- Geology, geophysics, glaciology
- Climate studies
- Six Automatic Geophysical Observatories (50 W, 8'x8'x16'):
 - Magnetometers
 - Radio receivers, riometers
 - Sky cameras
- Transport/maintenance via C-160 cargo aircraft (AGO) and Twin Otter



Role of Autonomous Robots

- <u>Dense magnetometer networks</u> ground-based observation of solarterrestrial physics
- <u>Distributed GPS</u> mapping ionospheric disturbances
- <u>Field studies</u> power and high bandwidth communication for environmental science, ecology, geophysics
- <u>Antarctic traverse</u> navigation support, crevasse free route planning
- <u>General benefits</u> frees scarce, costly air transport resources

Project Goals

Design and construct a robot for autonomous traverse of Antarctic plateau during austral summer

- Inexpensive (< \$20,000)</p>
- 500 km in under two weeks (avg 0.4 m/s)
- < 75 kg (90 kg, including payload)</pre>
- Maximum ground pressure < 3 psi
- Fits inside Twin Otter aircraft
- No tipping in wind up to 21 m/s
- Renewable or HED power source

Demonstrate value of robots to polar science

- Magnetometer deployment
- Ionosphere density mapping using GPS
- Traverse navigation support
- Mobility and solar power availability

State-of-the-Art

Nomad (CMU) – Internal combustion 725 kg, 2.4 x2.4x2.4-m, 0.5 m/s

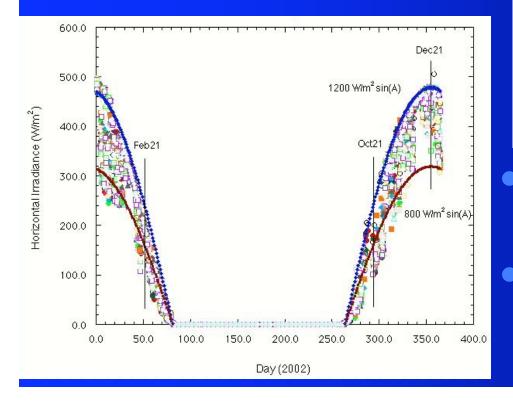
- good mobility viable
- cameras do not work in low contrast terrain
- Non-renewable energy
- Hyperion (CMU) "Sun navigation" 157 kg, 2 x 2.4 x 3-m, 0.3 m/s
 - Solar power viable
 - Not rugged enough for Antarctica
 - Commercial panels too heavy
- NASA/JPL Spirit and Opportunity, 174 kg, 2.3 x 1.6 x 1.5-m, 0.05 m/s
 - Well-engineered for extreme climates
 - Expensive

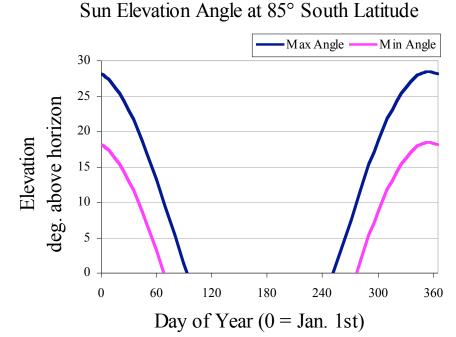
Design Specifications for Antarctic Mobility

- <u>Tractor test:</u> 8-9 psi ground pressure → 2-3" sinkage. No boot prints.
- <u>Pull test:</u> 6 and 8 psi ground pressure → 3-4" sinkage. Boot prints for 5-7 psi ground pressure at 1".

Design Specifications (cont)

- Minor surface roughness
- Typical sastrugi scale ~ 15 cm
- Firm snow on plateau
- Lack of contrast
- Katabatic winds near coast only



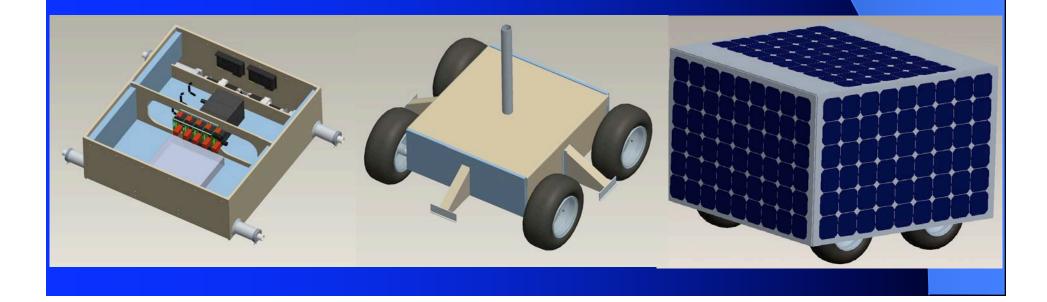


Solar Power in the Antarctic

Constant, low angle summer sun
'Brighter' sun in high, dry climate

- Insolation up to 1200 W/m²
- Few cloudy days on plateau

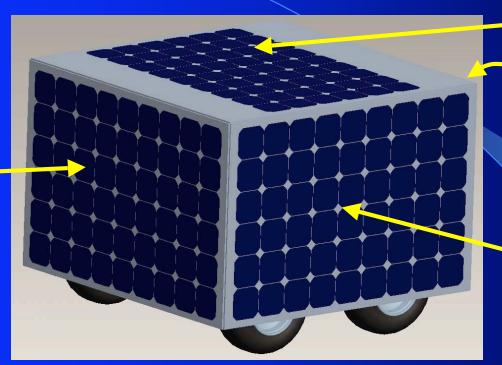
Significant reflected light


 albedo up to 0.95, proportional to sun elevation

Diffuse insolation by atmospheric scattering up to 100 W/m²

Cool Robot Design Concept

- Solar panels over chassis box attached by support arms
- Scalable design
- Custom power system, solar panels, and MPP trackers
- LI batteries for "backup" power
- Iridium communication


- Lightest ATV tires and custom rim/hubs
- High efficiency motors/geartrain
- Lightweight honeycomb composite chassis
- 2.5 cm foam insulation sufficient

Solar Capacity - Average Summer Sun

Front 128% (direct + reflected)

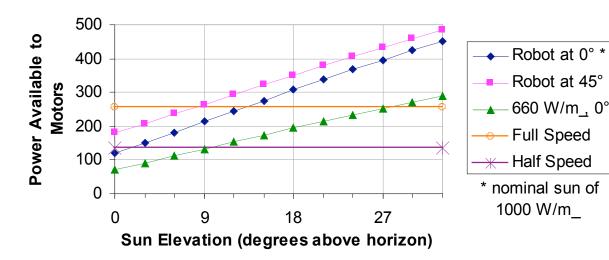
34% Back (in shadow) 11% Sides

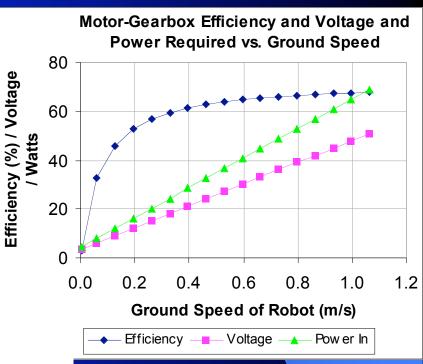
Top (direct sun only)

34% (reflected light only)

- 1 Sun 1000 W/m² insolation w/ 20° sun elevation (avg. for Nov-Feb)
- Robot facing front towards sun (worst case); Snow albedo 90% (conservative)
- Required power to meet specs+housekeeping and payload power: 250 W

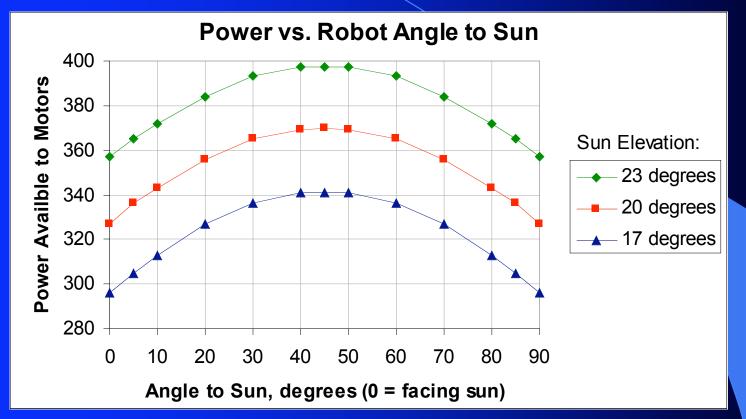
Solar Cells - Sunpower A-300


- 20% efficient @ 25 C, 12.5 x 12.5 cm² cell
- 3 W/cell @ 1000 W/m², \$9-\$12 per Watt
- All back contact
- Efficiency increases w/ temperature decrease
- Compare to space rated cell 23.5% efficient @ \$52 per Watt
- Bare cells available late 2003, panels mid-2004

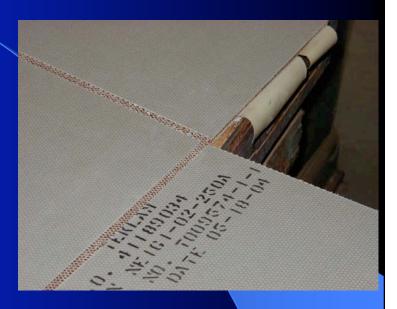


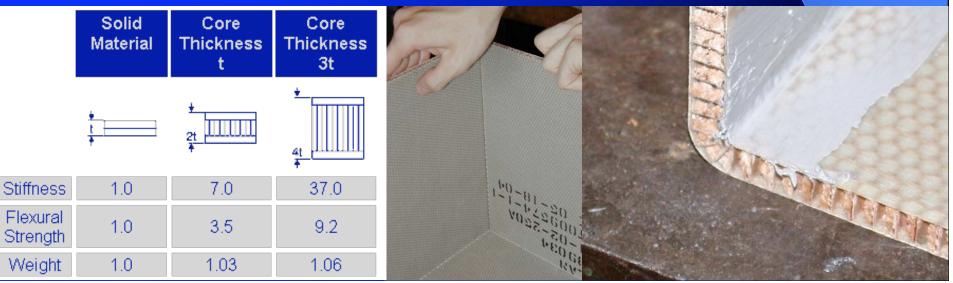
Power w/ Sunpower A-300 Cells

- Drivetrain sized for rolling resistance factor of 0.25
- Flat efficiency curve in speed range
- Cold room tested to -50 C
- Excess power available on average (over summer months)


Power vs. Sun Elevation Angle

Robot can move slowly - 0.2 m/s – under solar power only even in "worst case" conditions

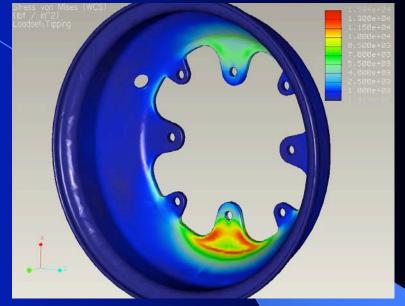

Power w/ Sunpower A-300 Cells (continued)

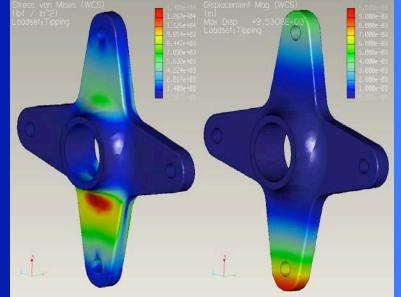


For portable field power, robot can be rotated to maximize power – 300 to 400 W available over most of the summer

Chassis Design and Fabrication

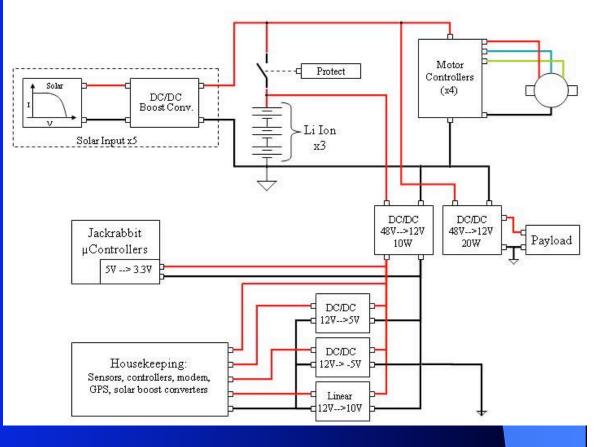
- Chassis material Teklam honeycomb composite: fiberglass face sheets with Nomex core
- Excellent strength-weight ratio: 9.5 mm thick, 1.6 kg/m² (compare to 3.8-mm thick aluminum plate, 10 kg/m²)
- "Slit and fold" construction w/ light angle brackets, epoxy, and fasteners





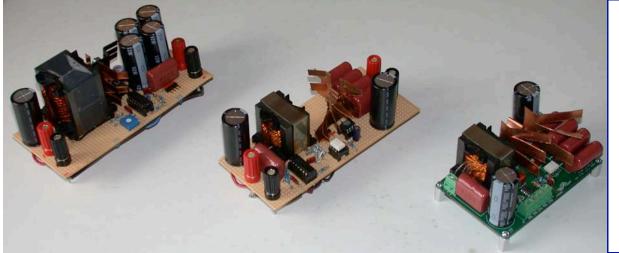
Wheels and Hubs

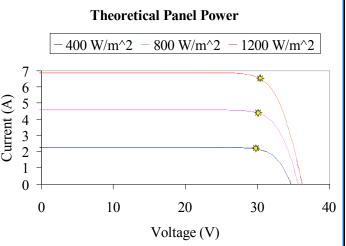
- Rim accepts 20x6-8 or 16x6-8 ATV tires
- Wheel assembly: 1.1 kg/wheel
- Savings of 8-9 kg over commercial rim/hub



Power System Design and Fabrication

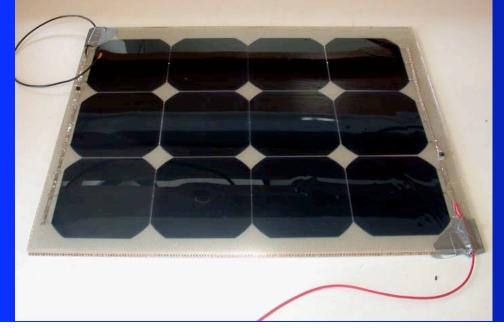
- Architecture/control for all solar operation
- Major components:
 - Li-ION batteries (12 Ah)
 - solar panels for primary power and battery charging
 - Custom DC-DC converters fuse panel power to bus at 48 V
 - Commercial DC-DC converters for housekeeping power
 - Slave microcontroller for power

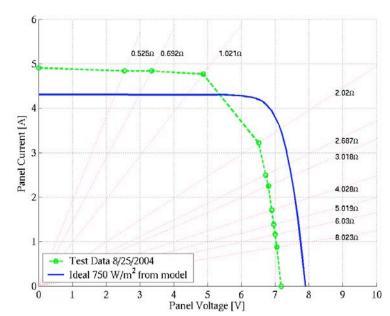

Custom DC-DC Boost Converters


- Fuse power from five panels operating at different voltages to common bus @ 48 V
- Can operate at Maximum Power Point with input from microcontroller
- Design cycle: 350 gm prototype to 200 gm PCB layout through careful choice of operational frequency and inductor
- >97% efficiency measured

350 gm prototype

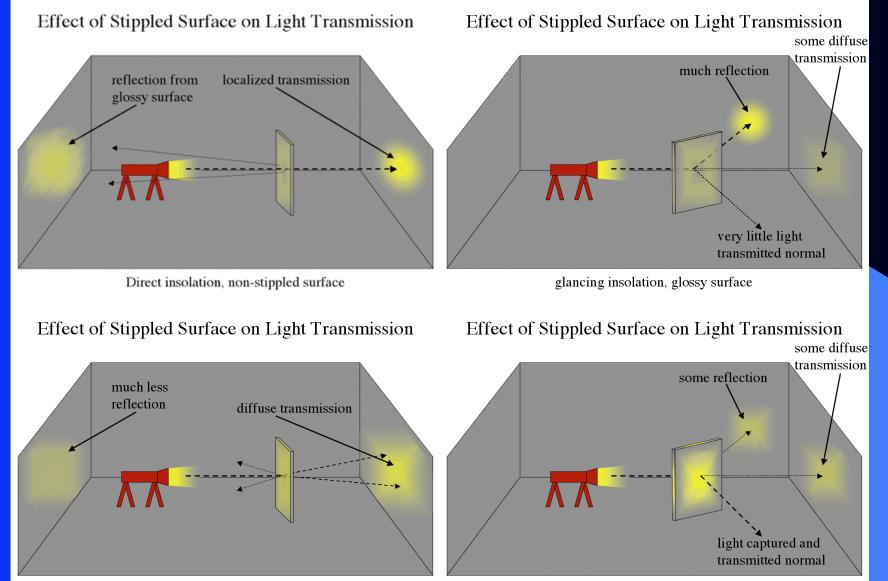
250 gm revision


200 gm PCB



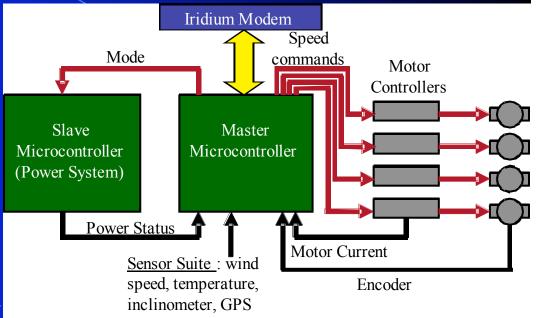
Panel Fabrication and Testing

- <u>Panel construction</u>: plexiglass soldering jig, silicone encapsulation on ¹/₄" honeycomb composite backing, fabric stippling.
- 18-19% panel efficiency
- 80 g/cell 4.32 kg for 9x6 panel (compare to 220 g/cell commercial panel)


Panel Reflectivity

• Stippling by overlay of course-woven fiberglass on silicone topcoat

Reduced Panel Reflectivity by Stippling



Direct insolation, stippled surface

glancing insolation, stippled surface

Navigation and Control

- Motor controllers provide closed-loop wheel speed control
- Microcontroller varies speed command to prevent slip
- GPS provides position and bearing
- Low bandwidth path planning and course correction
- Iridium communication of waypoints and data
- Under low power or high winds, robot moves enough to prevent snowdrift

St

b2bp

Bp

Cost and Mass

Item	Cost	Mass (kg)
Motors, encoders, gearheads, controllers (4)	\$4,650	7.3
Chassis (honeycomb) and insulation	\$200	7.5
Fasteners, epoxy, and reinforcement	\$1,200	1.5
Batteries	\$1,000	4.3
Microcontrollers, electronics	\$1,000	0.5
GPS, Iridium modem	\$1,300	0.8
Wheels - rims, hubs, tires (material only)	\$550	17.3
Solar panels (material only)	\$4,500	22
Power converters	\$500	1
Drivetrain materials and bearings	\$100	8
Misc wire, sensors, DC-DC converters, fuse box	\$400	2
Total	\$15,400	72.2

Timetable

- Fabrication and software completion by 12/04
- Winter testing in NH 12/04 2/05
- Greenland mission Summer '05, Antarctic mission Nov-Dec '05
 - Mobility and solar power measurements
 - GPS-based ionospheric density measurement
 - Magnetometer deployment
 - Ground penetrating radar support for traverse

Acknowledgements

National Science Foundation OPP-0343328

• Participants:

- Guido Gravenkötter and Gunnar Hamman, Univ. Armed Forces, Hamburg Germany, *Mechanical and navigation system design initiation*
- Alex Price '04, Th05, Mechanical design completion and fabrication
- Ben Kasdon, Ian Kahn, Xianghui Weng, Th04, Power system analysis
- Daniel Denton '08, Navigation, control, and fabrication
- Alex Streeter '03, Th04, M.S. candidate, *Power System Design and fabrication*
- Jim Lever (CRREL), Laura Ray, Project investigators
- Marc Lessard, Research Associate Prof., Thayer School

• Thayer School Machine Shop and Technical Staff

http://thayer.dartmouth.edu/other/crobots/

Resources

 p. 2 USGS Satellite Image Map of Antarctica, http://terraweb.wr.usgs.gov/TRS/projects/Antarctica/AVNRR.html,
 Small Map of Antarctica, http://www.lib.utexas.edu/maps/polar.html

p. 3 http://www.polar.umd.edu/ago.html

p. 4 http://www-istp.gsfc.nasa.gov/Education/Intro.html

p. 6 Robotic Antarctic Meteorite Search: The NOMAD Robot, http://www.frc.ri.cmu.edu/projects/meteorobot/Nomad/Nomad.html#Mechanical, accessed June 2004, used by permission

p. 6 Hyperion: Sun Synchronous Navigation, Carnegie Mellon Univ., www.ri.cmu.edu/projects/project_383.html_accessed June 2004, used by permission

p. 28 http://www-star.stanford.edu/~vlf/Antarctica/AGO/agoscience/wave_cartoon.gif