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Antarctic PlateauAntarctic Plateau
 Area >5M km2, high altitude plateau
 -40° to -20° C in summer (Nov-Feb)
 Winds avg. 2 m/s, max 20.5 m/s
 Firm snow

– <50 mm annual precipitation
– Flat, w/ wind-sculpted sastrugi



Science on Antarctic PlateauScience on Antarctic Plateau
 Field Science

– Aeronomy and astrophysics: “window to space”
– Soil and snow biology and ecology
– Geology, geophysics, glaciology
– Climate studies

 Six Automatic Geophysical Observatories
(50 W, 8’x8’x16’):

– Magnetometers
– Radio receivers, riometers
– Sky cameras

 Transport/maintenance via C-160 cargo
aircraft (AGO) and Twin Otter



Role of Autonomous RobotsRole of Autonomous Robots



 Dense magnetometer networks - ground-based observation of solar-
terrestrial physics

 Distributed GPS - mapping ionospheric disturbances
 Field studies - power and high bandwidth communication for

environmental science, ecology, geophysics
 Antarctic traverse - navigation support, crevasse free route planning
 General benefits - frees scarce, costly air transport resources
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Project GoalsProject Goals
 Design and construct a robot for

autonomous traverse of Antarctic
plateau during austral summer
– Inexpensive (< $20,000)
– 500 km in under two weeks (avg 0.4 m/s)
– < 75 kg (90 kg, including payload)
– Maximum ground pressure < 3 psi
– Fits inside Twin Otter aircraft
– No tipping in wind up to 21 m/s
– Renewable or HED power source

 Demonstrate value of robots to polar
science
– Magnetometer deployment
– Ionosphere density mapping using GPS
– Traverse navigation support
– Mobility and solar power availability



State-of-the-ArtState-of-the-Art
 Nomad (CMU) – Internal combustion

725 kg, 2.4 x2.4x2.4-m, 0.5 m/s
– good mobility viable
– cameras do not work in low contrast

terrain
– Non-renewable energy

 Hyperion (CMU) – “Sun navigation”
157 kg, 2 x 2.4 x 3-m, 0.3 m/s
– Solar power viable
– Not rugged enough for Antarctica
– Commercial panels too heavy

 NASA/JPL – Spirit and Opportunity,
174 kg, 2.3 x 1.6 x 1.5-m, 0.05 m/s
– Well-engineered for extreme climates
– Expensive



Design Specifications forDesign Specifications for
Antarctic MobilityAntarctic Mobility

 Tractor test: 8-9 psi ground pressure  2-3” sinkage.  No
boot prints.

 Pull test: 6 and 8 psi ground pressure  3-4” sinkage.
Boot prints for 5-7 psi ground pressure at 1”.



Design Specifications (cont)Design Specifications (cont)
 Minor surface roughness
 Typical sastrugi scale ~ 15 cm
 Firm snow on plateau
 Lack of contrast
 Katabatic winds near coast only



Solar Power in the AntarcticSolar Power in the Antarctic
 Constant, low angle summer sun
 ‘Brighter’ sun in high, dry climate

– Insolation up to 1200 W/m2

– Few cloudy days on plateau

 Significant reflected light
– albedo up to 0.95, proportional to

sun elevation
 Diffuse insolation by atmospheric

scattering up to 100 W/m2

Sun Elevation Angle at 85° South Latitude
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Cool Robot Design ConceptCool Robot Design Concept
 Solar panels over chassis box

attached by support arms
 Scalable design
 Custom power system, solar

panels, and MPP trackers
 LI batteries for “backup” power
 Iridium communication

 Lightest ATV tires and custom
rim/hubs

 High efficiency motors/geartrain
 Lightweight honeycomb

composite chassis
 2.5 cm foam insulation sufficient



Solar Capacity - Average Summer SunSolar Capacity - Average Summer Sun

 1 Sun - 1000 W/m2 insolation w/ 20° sun elevation (avg. for Nov-Feb)
 Robot facing front towards sun (worst case) ; Snow albedo 90% (conservative)
 Required power to meet specs+housekeeping and payload power:  250 W

Front
128% 
(direct + reflected)

Top (direct sun only)

34%
Back (in shadow)

11%

Sides
34%
(reflected light only)



Solar Cells - Solar Cells - SunpowerSunpower A-300 A-300

 20% efficient @ 25 C, 12.5 x 12.5 cm2

cell
 3 W/cell @ 1000 W/m2, $9-$12 per Watt
 All back contact
 Efficiency increases w/ temperature

decrease
 Compare to space rated cell – 23.5%

efficient @ $52 per Watt
 Bare cells available late 2003, panels

mid-2004



Power w/ Power w/ SunpowerSunpower A-300 Cells A-300 Cells
Motor-Gearbox Efficiency and Voltage and 

Power Required vs. Ground Speed
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 Drivetrain sized for rolling resistance
factor of 0.25

 Flat efficiency curve in speed range
 Cold room tested to -50 C
 Excess power available on average

(over summer months)
Power vs. Sun Elevation Angle
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 Robot can move slowly
– 0.2 m/s – under solar
power only even in
“worst case” conditions



Power w/ Power w/ SunpowerSunpower A-300 Cells A-300 Cells
(continued)(continued)

 For portable field power, robot can be rotated to maximize
power – 300 to 400 W available over most of the summer

Power vs. Robot Angle to Sun
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Chassis Design and FabricationChassis Design and Fabrication
 Chassis material - Teklam honeycomb

composite: fiberglass face sheets with
Nomex core

 Excellent strength-weight ratio: 9.5 mm
thick, 1.6 kg/m2  (compare to 3.8-mm
thick aluminum plate, 10 kg/m2)

 “Slit and fold” construction w/ light
angle brackets, epoxy,  and fasteners



Wheels and HubsWheels and Hubs
 Rim accepts 20x6-8 or 16x6-8 ATV

tires
 Wheel assembly:   1.1 kg/wheel
 Savings of 8-9 kg over commercial

rim/hub



Power System Design and FabricationPower System Design and Fabrication
 Architecture/control for

all solar operation
 Major components:

– Li-ION batteries (12 Ah)
– solar panels  for primary

power and battery charging
– Custom DC-DC converters

fuse panel power to bus at
48 V

– Commercial DC-DC
converters for
housekeeping power

– Slave microcontroller for
power



Custom DC-DC Boost ConvertersCustom DC-DC Boost Converters

350 gm prototype        250 gm revision      200 gm PCB

 Fuse power from five panels operating at different voltages to
common bus @ 48 V

 Can operate at Maximum Power Point with input from
microcontroller

 Design cycle: 350 gm prototype to 200 gm PCB layout through
careful choice of operational frequency and inductor

 > 97% efficiency measured

Theoretical Panel Power 
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Panel Fabrication and TestingPanel Fabrication and Testing
 Panel construction: plexiglass soldering

jig, silicone encapsulation on ¼”
honeycomb composite backing, fabric
stippling.

 18-19% panel efficiency
 80 g/cell - 4.32 kg for 9x6 panel

(compare to 220 g/cell commercial panel)



Panel ReflectivityPanel Reflectivity

 Stippling by overlay of course-woven fiberglass on
silicone topcoat



Reduced Panel Reflectivity by StipplingReduced Panel Reflectivity by Stippling



Navigation and ControlNavigation and Control
 Motor controllers provide

closed-loop wheel speed
control

 Microcontroller varies speed
command to prevent slip

 GPS provides position and
bearing

 Low bandwidth path planning
and course correction

 Iridium communication of
waypoints and data

 Under low power or high
winds, robot moves enough to
prevent snowdrift
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Cost and MassCost and Mass
Item Cost Mass (kg)

Motors, encoders, gearheads, controllers (4) $4,650 7.3

Chassis (honeycomb) and insulation $200 7.5

Fasteners, epoxy, and reinforcement $1,200 1.5

Batteries $1,000 4.3

Microcontrollers, electronics $1,000 0.5

GPS, Iridium modem $1,300 0.8

Wheels - rims, hubs, tires (material only) $550 17.3

Solar panels (material only) $4,500 22

Power converters $500 1

Drivetrain materials and bearings $100 8

Misc. - wire, sensors, DC-DC converters, fuse box $400 2

Total $15,400 72.2



TimetableTimetable

 Fabrication and software completion by 12/04
 Winter testing in NH 12/04 – 2/05
 Greenland mission Summer ’05, Antarctic

mission  Nov-Dec ’05
– Mobility and solar power measurements
– GPS-based ionospheric density measurement
– Magnetometer deployment
– Ground penetrating radar support for traverse
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