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Equation-free Modeling
For Complex Systems

or
Enabling Microscopic Simulators to perform

System Level Tasks
or

Solving Differential Equations 
Without the Equations

Or
A Systems Approach to Multiscale Simulations
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SIMULATION RESULTS
50000 agents,  ε+=0.075, ε - =-0.072, v0

+ = v0
- =20

Open loop response, g = 46.5



Loose thoughts
about multiscale /complex systems and their

modeling
– Our example:  interaction of many “units” between

themselves and with their environment ---
“emergent” behavior.

– “Physics” at a fine level, questions asked at a
coarse-grained level

– This kind of complexity  vs.  The complexity of a
commercial airliner

• Is laminar fluid flow “simple” ?
• Two billiard balls colliding elastically – “simple” or

“complex” ?

• Effective  simplicity.



Multiscale / Complex System Modeling

“Textbook” engineering modeling:
macroscopic behavior    through
macroscopic models
(e.g. conservation equations augmented by
closures)

Alternative (and increasingly frequent) modeling
situation:

• Models
– at a FINE / ATOMISTIC / STOCHASTIC level
–                         MD, KMC, BD, LB (also CPMD…)

• Desired Behavior
– At a COARSER, Macroscopic Level
–              E.g. Conservation equations, flow,

reaction-diffusion, elasticity
• Seek a bridge

– Between Microscopic/Stochastic Simulation
– And “Traditional, Continuum” Numerical Analysis
– When closed macroscopic equations are not

available in closed form



What I will tell you:

Solve the equations WITHOUT writing them down.
Write “software wrappers” around “fine level” microscopic codes

Top level:       all algorithms we know and love  (e.g. AUTO)
Bottom level: MD, kMC, LB, BD, heterogeneous/ discrete media,

          CPMD, hybrid
INTERFACE:

Trade  Function Evaluation
for “on demand” experimentaton and estimation

“Equation Free” (motivated by “matrix free iterative linear algebra”)
Algorithms (coarse integration, patch dynamics, coarse RPM…)
Tasks (stability/ bifurcation, control, optimization, dynamic renormalization)
Examples (LB, KMC, BD, MD),   and some nebulous thoughts

Think of the microscopic simulator AS AN EXPERIMENT
That you can set up and run at will 
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Projective Integration - a sequence of outer integration steps
 based on inner simulator + estimation (stochastic inference)

Accuracy and stability of these methods – NEC/TR 2001
(w/ C. W.Gear,  SIAM J.Sci.Comp. 03, J.Comp.Phys. 03,
--and coarse projective integration (inner LB)
                                      Comp.Chem.Eng. 2002
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Projective methods in time:

-perform detailed simulation for short periods
             or use existing/legacy codes
- and then extrapolate forward over large steps



Coarse Behavior

kMC, SDE, MD, particles…

NS, Chemotaxis..

Happens in nature

Happens in computations

Lift
Restrict





RESTRICTION - a many-one mapping from a high-dimensional
description (such as a collection of particles in Monte Carlo
simulations) to a low-dimensional description - such as a finite
element approximation to a distribution of the particles.

LIFTING - a one-many mapping from low- to high-dimensional
descriptions.

We do the step-by-step simulation in the high-dimensional
description.

We do the macroscopic tasks in the low-dimensional description.



SIMULATION RESULTS
50000 agents, ε+=0.075, ε - = - 0.072, v0
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Coarse projective integration: Accelerating things

Simulation results at
g = 35, 200,000 agents
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THE CONCEPT:   What else can I do with an integration code ?

Have equation

Write Simulation 
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 “Coarse” Bifurcations
Bifurcation

Results

Coarse Bifurcation Code
RPM-based

Parameter

coarse IC PDE-based
Timestepper

Microscopic
Timestepper

…{Microscopic IC’s…

Local equilibrium assumption 
e.g Maxwellian distribution

}

Averaging in time
And/or space and or nr. 
of realizations and filtering

 LIFT µ RESTRICT M



30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0 ( )m x

g

The Bifurcation Diagram

35 40 45 50

0.8

1

1.2

1.4

1.6

1.8

2

g

1
!

-1 0 1
0

100

200

300

400

-1 0 1
0

100

200

300

400 ) ,x( gH 0)()xx(á 11 =!""+"= Sgg#

S

T

!

"
#

)( 01 xx
á

S

gg

Ä

)( 01 !"#

Tracing the branch with arc-length continuation
)(!x )( !+tx

T
!

0),( =!" gxx



The Bifurcation Diagram
50000 agents, g=35, ε+=0.075, ε-=-0.072, v0

+=v0
-=20

Open loop response. From unstable to stable markets



The Bifurcation Diagram
50000 agents, g=35, ε+=0.075, ε - = -0.072, v0

+ = v0
- = 20

Open loop response. Blow up



Multiscale Modeling Challenges:
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Proposal: detailed modeling in small spatial boxes with
interpolation between boxes - the “gap-tooth scheme”

How to improve the spatial
technology?



Gap-Tooth Scheme

Space

Gap

Microscopic
description
in each tooth

Boundary conditions on teeth edges
via interpolation of coarse quantities from neighboring teeth

Ways to impose “coarsely inspired”  boundary conditions
   Motivated from Li & Yip, 1998:   Kevrekidis et al., nlin.CD/0302055 at arXiv.org

           Gear, Li and Kevrekidis, physics/0303010 at arXiv.org / PLA



Multiscale Modeling Challenges:
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Can we combine gap tooth with projective integration in time?



Multiscale Modeling Challenges:
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The “action” is going on at the intersection of the strips

Multiscale Modeling Challenges:
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The “action” is going on at the intersection of the strips
- these are “microscopic” elements and, by interpolation and
extrapolation, they are patched together over the full region
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 Viscous Burgers equation:
kMC Realization



STABILIZING UNSTABLE M*****S

Feedback controller design

We consider the problem of stabilizing an equilibrium x*, p* of a dynamical system
of the form

))( ),(((t) tptxfx =&
, 

f : RN x R!
R N where f and hence x* is characterized of uncertainty

To do this the dynamic feedback control law is implemented: ( )* K x Dwp p= + +

Where w is a M-dimensional variable that satisfies w x Dw= +&

Choose matrices K, D  such that the closed loop system is stable 

At steady state: 0  0w , x= =& & ! *p p= and the system is stabilized in it’s
“unknown” steady state 

 *, x x*p p= =

In the case under study the control variable is the exogenous arrival frequency of
“negative” information vex

- and the controlled variables the coefficients of the orthogonal
polynomials used for the approximation of the ICDF



STABILIZING UNSTABLE MARKETS
Control variable: the exogenous arrival frequency of “negative” information vex

-



SIAM– July, 2004

Clustering and stirring in a plankton model

Young, Roberts and Stuhne,  Nature  2001



Dynamics of System with
convection



Simulation Method

• Random (equal) birth and death,
probability: λ = µ.

• Brownian motion.
• Advective stirring. (ϕ, θ are random

phases)

• IC: 20000 particles randomly placed in 1*1
box

• Analytical Equation for G(r):
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Stirring by a random field (color
= y)



Dynamics of System with
convection



Projective Integration: From t=2,3,4,5 to 10



Mapping g0(r) – Lifting

1. From any system, check to find interval
[rm, rm+1), s.t. max|g(r)/g0(r)-1|.

2. if g(r) > g0(r), remove the atom with the
largest contribution to g(r), and place it
randomly inside box.

3. if g(r) < g0(r), select atoms i, j, st rij > rm
and contribute the least to g(r). Remove
the less crowded atom between i and j,
and place it at the distance of [rm, rm+1)
from the other.

4. repeat step 1, until precision is good
enough.



Comparison of actual system
and lifted system based on

g(r)



Fixed Point Calulation Using
Newton-Raphson (2-parameters)

0.050.8015.383

0.320.7915.692

1.050.8113.961

1.570.8312.480

ErrorX ScaleAreaIteration



NLDbyMDofH2OinCNT



Water Confinement in Carbon Nanotube Molecular Channels

Classical Molecular Dynamics (MD)

- Flexible CNT (L = 13.5 Å; R = 8.1

Å)

- Graphite parameters

- 1034 TIP3P water molecules

- AMBER 6.0

- Particle-mesh Ewald electrostatics

- Gerhard Hummer

G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature 414, 188-190 (2001)

Model system for studying H20 transport in channel pores of membrane proteins



Filling-Emptying Transition of H2O in CNT

G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature 414, 188-190 (2001)

CNT

Water 



Filling-Emptying Transition of H2O in CNT

“Equation Free” Approach
Analyse effect of CNT-Water Interactions on the H20 Occupancy 

G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature 414, 188-190 (2001)



Effect of CNT-Water Attraction (λ) on Pore Hydration
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...

The Heart of the Method – The “Timestepper”
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“Lifting”

• Constrain for τ = 15 ps and sample configurations: τ > 10 ps
• Initialize replicas: velocities from Maxwell-Boltzmann distribution

τ = 1 ps
(Coarse “fine”)



Solving for the Branches

N ~ 0 N ~ 5

G(N)

Solve by Newton-Raphson
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Solve ΔG(λ) = 0
NR:  λ1 = λ0 - ΔG(λ=λ0) / ΔG’(λ)|λ0

ΔG’(λ)|λ0 = (ΔG(λ0+dλ)-ΔG(λ0)) / dλ
-0.00960.7854
-0.07580.7864
2.5830.750
4.3540.725

ΔGλ
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• With λ = 0.7864 ⇒ CMD for G(N)
• Fit quadratic for first 3 data points and

estimate λ = 0.7854
• With λ = 0.7854 ⇒ CMD for G(N)
• Fit quadratic again – no change in fit;

estimated λ = 0.7853

Effective Free Energy Profiles: First Order Phase Transition



Kinetics of Filling-Emptying Transitions
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Reverse Projective Integration –
        a sequence of outer integration steps backward;
        based on forward steps + estimation

We are studying the accuracy and stability of these methods
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Reverse Integration:  a little forward, 
and then a lot backward !
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 And so all our algorithms for computing stable manifolds
   can be used (in conjunction with coarse timesteppers and RI
   to approximate
   low-dimensional
  free energy surfaces !

ALTERNATIVE
Mathematics –

inspired
ENSEMBLES

The Oseberg Transition
Johnson, Jolly & K.
IJBC 2001



Rare Events: Escaping from stability
Open loop response, g = 45.8

Histogram of escape times
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Computer-Aided Analysis
of Nonlinear Problems in Transport Phenomena

Robert A. Brown, L. E. Scriven and William J. Silliman

in HOLMES, P.J.,  New Approaches to Nonlinear Problems in
Dynamics, 1980

  ABSTRACT    The nonlinear partial differential equations of mass, momentum, energy, 
Species and charge transport….  can be solved in terms of functions of limited differentiability,
no more than the physics warrants, rather than the analytic functions of classical analysis…
…..  basis sets consisting of low-order polynomials.   ….   systematically generating and
analyzing solutions by fast computers employing modern matrix techniques.

….. nonlinear algebraic equations by the Newton-Raphson method.  … The Newton-Raphson
technique is greatly preferred because the Jacobian of the solution is a treasure trove, not only
for continuation, but also for analysing stability of solutions, for detecting bifurcations of
solution families, and for computing asymptotic estimates of the effects, on any solution, of
small changes in parameters, boundary conditions, and boundary shape……

In what we do, not only the analysis, but the equations themselves  are obtained on the
computer, from short experiments with an alternative, microscopic description.



Coming full circle
No equations ?

Isn’t that a little medieval ?  Equations = “Understanding”, right
?

AGAIN   matrix free iterative linear algebra

A x = b

PRECONDITIONING,     B A x = B b

B  approximate inverse of A

Use “the best equation you have”

to precondition equation-free computations.

With enough initialization authority:

equation free laboratory experiments


