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ABSTRACT 
 

In current modeling, the best available descriptions of a system often come at a fine level 
(atomistic, stochastic, microscopic, individual-based), while the questions asked and the tasks 
required by the modeler (prediction, parametric analysis, optimization and control) are at a 
much coarser, averaged, macroscopic level.  Traditional modeling approaches start by first 
deriving macroscopic evolution equations from the microscopic models, and then bringing an 
arsenal of mathematical and algorithmic tools to bear on these macroscopic descriptions.  Over 
the last few years, and with several collaborators, we have developed and validated a 
mathematically inspired, computational enabling technology that allows the modeler to perform 
macroscopic tasks acting on the microscopic models directly.  We call this the “equation-free” 
approach, since it circumvents the step of obtaining accurate macroscopic descriptions.  We 
argue that the backbone of this approach is the design of (computational) experiments.  
Traditional continuum numerical algorithms can be viewed as protocols for experimental design 
(where “experiment” means a computational experiment set up and performed with a model at a 
different level of description).  Ultimately, what makes it all possible is the ability to initialize 
computational experiments at will.  Short bursts of appropriately initialized computational 
experimentation— through matrix-free numerical analysis and systems theory tools like variance 
reduction and estimation—bridge microscopic simulation with macroscopic modeling.  
Remarkably, if enough control authority exists to initialize laboratory experiments “at will,” this 
computational enabling technology can become a set of experimental protocols for the equation-
free exploration of complex system dynamics. 

 
 
A persistent feature of many complex systems is the emergence of macroscopic, coherent 

behavior from the interactions of microscopic “agents”—molecules, cells, individuals in a 

population—among themselves and with their environment.  The implication is that macroscopic 

rules, a description of the system at a coarse-grained, high level, can somehow be deduced from 

microscopic ones, a description at a much finer level.  For laminar Newtonian fluid mechanics, a 

successful coarse-grained description, the Navier-Stokes equations, was known on a 
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phenomenological basis long before its approximate derivation from kinetic theory.  Today we 

must frequently study systems for which the physics can be modeled at a microscopic, fine scale; 

yet it is practically impossible to explicitly derive a good macroscopic description from the 

microscopic rules.  Hence, we look to the computer to explore the macroscopic behavior based 

on the microscopic description. 

Macroscopic models of reaction and transport processes in our textbooks come in the 

form of conservation laws (species, mass, momentum, energy) closed through constitutive 

equations (reaction rates as a function of concentration, viscous stresses as functionals of velocity 

gradients).  These models are written directly at the scale (alternatively, at the level of 

complexity) at which we are interested in practically modeling the system behavior.  Because we 

observe the system at the level of concentrations or velocity fields, we sometimes forget that 

what is really evolving during an experiment is distributions of colliding and reacting molecules.  

We know, from experience with particular classes of problems, that it is possible to write 

predictive deterministic laws for the behavior (predictive over relevant space/time scales that are 

useful in engineering practice) observed at the level of concentrations or velocity fields.  

Knowing the right level of observation at which we can be practically predictive, we attempt to 

write closed evolution equations for the system at this level.  The closures may be based on 

experiment (e.g., through engineering correlations) or on mathematical modeling and 

approximation of what happens at more microscopic scales (e.g., the Chapman-Enskog 

expansion).  In many problems of current modeling practice, ranging from materials science to 

ecology and from engineering to computational chemistry, the physics are known at the 

microscopic/individual level, and the closures required to translate them to a high-level, coarse-

grained, macroscopic description are not available.  Sometimes we do not even know at what 
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level of observation one can be practically predictive.  Severe computational limitations arise in 

trying to bridge, through direct computer simulation, the enormous gap between the scale of the 

available description and the macroscopic, “system” scale at which the questions of interest are 

asked and the practical answers are required (see, e.g. Maroudas, 2000; Lu and Kaxiras, 2004).  

These computational limitations are a major stumbling block in current complex system 

modeling.  

We will describe a computational approach for dealing with any complex, multiscale 

system whose collective, coarse-grained behavior is simple when we know in principle how to 

model such systems at a very fine scale (e.g., through molecular dynamics).  We assume that we 

do not know how to write good simple model equations at the right coarse-grained, macroscopic 

scale for their collective, coarse-grained behavior.  We will argue that, in many cases, the 

derivation of macroscopic equations can be circumvented; that by using short bursts of 

appropriately initialized microscopic simulation one can effectively solve the macroscopic 

equations without ever writing them down.  A direct bridge can be built between microscopic 

simulation (e.g., kinetic Monte Carlo, agent-based modeling) and traditional continuum 

numerical analysis.  It is possible to enable microscopic simulators to directly perform 

macroscopic, systems-level tasks.  The main idea is to consider the microscopic, fine-scale 

simulator as a (computational) experiment that one can set up, initialize, and run at will.  The 

results of such appropriately designed, initialized, and executed brief computational experiments 

allow us to estimate the same information that a macroscopic model would allow us to evaluate 

from explicit formulas.  

The heart of the approach can be conveyed through a simple example.  Consider a single, 

autonomous ordinary differential equation, 
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dt

=  

 
Think of it as a model for the dynamics of a reactant concentration in a stirred reactor.  Equations 

like this embody “practical determinism” as discussed above:  given a finite amount of 

information—the state at the present time, c(t=0)—we can predict the state at a future time.  

Consider how this is done on the computer using, for illustration, the simplest numerical 

integration scheme, forward Euler: 

 cn+1 ≡ c([n+1]τ) = cn+τf(cn).  
 

Starting with the initial condition, c0, we go to the equation and evaluate f(c0), the time 

derivative, or slope of the trajectory c(t); we use this value to make a prediction of the state of the 

system at the next time step, c1.  We then repeat the process:  go to the equation with c1 to 

evaluate f(c1) and use the Euler scheme to predict c2; and so on.  Forgetting for the moment 

accuracy and adaptive step-size selection, consider how the equation is used: given the state we 

evaluate the time derivative; and then, using mathematics (in particular, Taylor series and 

smoothness to create a local linear model of the process in time) we make a prediction of the 

state at the next time step.  A numerical integration code will “ping” a subroutine with the current 

state as input and will obtain as output the time-derivative at this state.  The code will then 

process this value and use local Taylor series in order to make a prediction of the next state (the 

next value of c at which to call the subroutine evaluating the function f).  Three simple things are 

important to notice.  First, the task at hand (numerical integration) does not need a closed formula 

for f(c)—it only needs f(c) evaluated at a particular sequence of values cn.  Whether the 

subroutine evaluates f(c) from a single-line formula, uses a table lookup, or solves a large 

subsidiary problem, from the point of view of the integration code it is the same thing.  Second, 

the sequence of values cn at which we need the time derivative evaluated is not known a priori.  
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It is generated as the task progresses, from processing results of previous function evaluations 

through the Euler formula.  We know that protocols exist for designing experiments to 

accomplish tasks such as parameter estimation (Box et al., 1978).  In the same spirit, we can 

think of the Euler method, and of explicit numerical integrators in general, as protocols for 

specifying where to perform function evaluations based on the task we want to accomplish 

(computation of a temporal trajectory).  Last, the form of the protocol (the Euler method here) is 

based on mathematics, particularly on smoothness and Taylor series.  The trajectory is locally 

approximated as a linear function of time; the coefficients of this function are obtained from the 

model using function evaluations.  

Suppose now that we do not have the equation, but we have the experiment itself.  We can 

fill up the stirred reactor with reactant at concentration c0, run for some time, and record the time 

series of c(t).  Using the results of a short run (over, say, one minute), we can now estimate the 

slope, dc/dt at t=0, and predict (using the Euler method) where the concentration will be in, say 

10 minutes.  Now, instead of waiting for nine minutes for the reactor to get there, we stop the 

experiment and immediately start a new one:  reinitialize the reactor at the predicted 

concentration, run for one more minute, and use forward Euler to predict what the concentration 

will be 20 minutes down the line.  We are substituting short, appropriately initialized 

experiments, and estimation based on the experimental results, for the function evaluations that 

the subroutine with the closed form f(c) would return.  We are in effect doing forward Euler 

again, but the coefficients of the local linear model are obtained using experimentation “on 

demand” (Cybenko, 1996) rather than function evaluations of an a priori available model. 

Now we complete the argument.  Suppose that the inner layer is not a laboratory 

experiment, but a computational one, with a model at a different, much finer level of description, 
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for the sake of the discussion, a lattice kinetic Monte Carlo (kMC) model of the reaction.  Instead 

of running the kMC model for long times, and observing the evolution of the concentration, we 

can exploit the procedure described above, perform only short bursts of appropriately initialized 

microscopic simulation, and use their results to evolve the macroscopic behavior over hopefully 

much longer time scales.  It is much easier to initialize a code at will—a computational 

experiment—as opposed to initializing a new laboratory experiment.  Many new issues arise, 

notably noise in the form of fluctuations, from the microscopic solver.  The conceptual point, 

however, remains:  even if we do not have the right macroscopic equation for the concentration, 

we can still perform its numerical integration without obtaining it in closed form.  The skeleton 

of the wrapper (the integration algorithm) is the same one we would use if we had the 

macroscopic equation, but now function evaluations are substituted by short computational 

experiments with the microscopic simulator, whose results are appropriately processed for local 

macroscopic identification and estimation.  If a large separation of time scales exists between 

microscopic dynamics (here, the time we need to run kinetic Monte Carlo to estimate dc/dt) and 

the macroscopic evolution of the concentration, this procedure may be significantly more 

economical than direct simulation. 

Passing information between the microscopic and macroscopic scales at the beginning 

and the end of each computational experiment is a vitally important issue.  It is accomplished 

through a lifting operator (macro- to micro-) and a restriction operator (micro- to macro-) as 

discussed below (Theodoropoulos et al., 2000; Kevrekidis et al., 2003 and references therein).  

The proposed computational methodology consists of the following basic elements: 

(a) Choose the statistics of interest for describing the long-term behavior of the system 

and an appropriate representation for them.  For example, in a gas simulation at the particle level, 
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the statistics would probably be density and momentum (zeroth and first moment of the particle 

distribution over velocities), and we might choose to discretize them in a computational domain 

via finite elements.  We call this the macroscopic description, u.  These choices suggest possible 

restriction operators, Μ, from the microscopic-level description U, to the macroscopic 

description:  u = ΜU;   

(b) Choose an appropriate lifting operator, µ,from the macroscopic description, u, to one 

or more consistent microscopic descriptions, U.  For example, in a gas simulation using pressure 

etc. as the macroscopic-level variables, µ  could make random particle assignments consistent 

with the macroscopic statistics. µΜ=Ι , i.e. lifting from the macroscopic to the microscopic and 

then restricting (projecting) down again should have no effect, except roundoff; 

(c) Start with a macroscopic condition (e.g. concentration profile) u(t0);     

(d) Transform it through lifting to one or more fine, consistent microscopic realizations 

U(t0) = µu(t0);   

(e) Evolve this(ese) realization(s) using the microscopic simulator for the desired short 

macroscopic time T, generating the value(s) U(T);        

(f) Obtain the restriction(s) u(T)=ΜU(T) (and average over them).  

This constitutes the coarse time-stepper, or coarse time-T map.  If this map is accurate 

enough, we discussed above how to use it in a two-tier procedure to perform Coarse Projective 

Integration (Gear and Kevrekidis, 2003, Gear, 2001, Gear et al., 2002) (see Figure 1a for a 

schematic).  Coarse projective integration and also coarse bifurcation computations (see Figure 

1b) have been used to accelerate lattice kinetic Monte Carlo simulations of catalytic surface 

reactions (Makeev et al., 2002a, 2002b; Rico-Martinez et al., 2004), Brownian dynamics 

simulations of nematic liquid crystals (Siettos et al., 2003), and much more.   
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(b)

(a) 

  

 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
Figure 1.  Schematic illustrations of (a) coarse projective integration;  
(b) coarse timestepper-based bifurcation computations (see text). 

 
 

Timestepper based methods are, in effect, alternative ensembles for performing 

microscopic (molecular dynamics, kMC, Brownian dynamics) simulations.  Innovative 

multiscale/multilevel techniques proposed over the last decade that can be integrated in an 
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equation-free, timestepper-based framework include the quasi-continuum methods of Phillips and 

coworkers (Phillips, 2001; Ortiz and Phillips, 1999) and the optimal prediction methods of 

Chorin and coworkers (Chorin et al., 1998; 2000) (see the  discussion in Kevrekidis et al., 2003).  

If one has good macroscopic equations, one should use them.  But when these equations are not 

available in closed form, and such cases arise with increasing frequency in contemporary  

modeling, the equation-free computational enabling technology we outlined here may hold the 

key to the engineering of effectively simple systems. 
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