Anatomy of a Challenge Problem for Face Recogntion

Dr. P. Jonathon Phillips

NIST

National Institute of Standards and Technology

...working with industry to foster innovation, trade, security and jobs

My Background

- FERET 1993-1997
 - Challenge problem and evaluation
- FRVT 2000
 - Evaluation
- FRVT 2002
 - Evaluation
- Gait Challenge 2002-2003
 - Challenge problem
- Face Recognition Grand Challenge 2004-2006
 - Challenge problem
- FRVT 2006
 - Evaluation
- Iris Challenge Evaluation (ICE) 2005-2006
 - Challenge problem

FR² VT²

Background

ISN

Face Recognition Tasks

5 N

Same **Person** **False Accept Rate**

Different People

ら へ

Verification Scoring

Results are reported on Receive Operating Characteristic (ROC) Equal error rate is summary statistic

The Underlying Statistical Problem

ISN

Structure of Challenge Problem

5 N

Examples of Biometric Evaluations

- FERET Aug 94, Mar 95, Sep 96
- FRVT 2000, 2002
- FpTVE Fingerprint evaluation
- FVC Fingerprint Verification Competition
- FAC Face Authentication Competition
- NIST Speaker Recognition Evaluations

Fingerprint Vendor Technology Evaluation

Facial Recognition Vendor Test 2000

FACE RECOGNITION VENDOR TEST 2002

ISN

Data Collection

- 20+ year life span
- Goal of evaluation
- Start collection prior to program
- Broadly distribute data

Independent Evaluations

Measuring Biometric Performance

Example

ISS

FRGC Goal and Objective

• The primary goal of the FRGC is to:

Promote and advance face recognition technology to support U.S. Government face recognition efforts

FRGC Goal and Objective

• The primary goal of the FRGC is to:

Promote and advance face recognition technology to support U.S. Government face recognition efforts

• The primary objective of the FRGC is to:

Develop still and 3D algorithms to improve performance an order of magnitude over FRVT 2002

Background

Baseline

July 2002

Independent **Evaluation**

Select Point to Measure

• Verification rate at :

- False accept rate = 0.1%

• Current:

- 20% error rate (80% verification rate)

• Goal:

- 2% error rate (98% verification rate)

FRGC Modes Examined

Single Still

5 N N

Outdoor/ Uncontrolled

Multiple Stills

3D Single view

3D Full Face

Experiments 1, 2, 3, and 4

•Exp 1: Controlled indoor still versus indoor still

•Exp 2: Indoor multi-still versus indoor multi-still

•Exp 3: 3D versus 3D -3t, texture channel only -3s, shape channel only

•Exp 4: Controlled indoor still versus uncontrolled still

Size of Experiments

Exp.	Target set size	Query set size	No. Sim Scores (million)
1	16,028	16,028	257
2	4,007	4,007	16
3	4,007	4,007	16
4	16,028	8,014	128

Scientific Questions

High Resolution

Computer Vision

Pattern Recognition

3D

5 Z

VS

Summary of FRGC Results – January 2005

JS

FRGC Progress

5 N

Challenge Problems and Technology Development Example: Advanced Correlation Filter Method *

Independent Evaluations (Gold Standard)

Conclusions

Twelve Years of Progress

- FERET 1993-1997
 - Challenge problem and evaluation
- FRVT 2000
 - Evaluation
- FRVT 2002
 - Evaluation
- Face Recognition Grand Challenge 2004-2006
 - Challenge problem
- FRVT 2006
 - Evaluation

FR of VT 2

Measurement Science Leads to Innovation -Face Recognition

Technology Improvement 1996 - Present Different Data Set

5 N

Building a Challenge

- Goals—Simple and grandiose
- Setting goals—Cheat
- Competing hypothesis
- Complete infrastructure for challenge problems
- Open to all