Large-Scale Human Activity Recognition Using Ultra-Dense Sensing

Matthai Philipose Intel Research

SHARP group members: T. Choudhury, S. Consolvo, K. Fishkin, A. Rea, D. Haehnel, P. Powledge, J. Smith

U. Washington/CMU/MIT collaborators:

G. Borriello, D. Fox, B. Jiang, H. Kautz, A. Mamishev, D. Patterson, S. Roy, A. Sample, K. S.Rajan, E. M. Tapia, D. Wilson, D. Wyatt

Sep 22, 2005 NAE/FOE

Monitoring Human Physical Activity Is...

- ... an essential aspect of human life e.g. care-giving, training, managing, surveillance, directing
- highly manual, tedious, intrusive
- ... beyond conventional computing

... at the limits of computing research

Application 1 Filling Activities of Daily Living (ADL) Forms

Activity Class	<u>Rating (1-5)</u>
Personal Appearance	
Oral Hygiene	
Toileting	
Washing up	
Appliance Use	
Use of Heating	
Care of clothes and linen	
Making a snack	
Making a drink	
Use of phone	
Leisure Activity	
Infant Care	
Medication Taking	
Housework	

shaving, brushing teeth, combing hair, flossing, gargling, applying make-up, bathing, using microwave, baking, blending, watching TV, doing laundry, mending, folding, putting away laundry, adjusting thermostat, making a sandwich, making a chocolate cake, making a martini, making a milkshake, getting a glass of water, phoning friends, phoning family, phoning caregivers, knitting, watching videos, going for a walk, walking the pet, putting grandson to bed, taking bloodpressure medication, taking vitamins, taking calcium, dusting, tidying, cleaning toilets, vacuuming, cleaning blinds, removing cobwebs, ...

Application 2 Managing Best Known Methods (BKMs)

- Optimal methods confer strategic advantage
 - I machine rooms, operating rooms, burger franchises
- I Managing BKMs involves:
 - Identifying them
 - Training people to use them
 - I Monitoring their use
- I e.g. Intel maintenance, UW anesthesiology training


```
Application 3
Activity-Based Reminders
```

when I eat lunch remind me to take my pill

when I change baby's diapers remind me to apply cream

when I use the bathroom remind me to wash hands

when I use fab oven remind me to run debug sequence

The Traditional Architecture

Four scaling challenges:

- 1. Designing low-level sensing
- 2. Designing model schema
- 3. Creating models
- 4. Pinpointing anomalies

Basic Insight

What you use determines what you do

Designing Model Schema Activities as Object-Use Patterns

Low-Level Sensing Detecting Object Use

Low-Level Sensing Radio Frequency Identification (RFID)

Tiny, 40-cent battery-free **tags** + ambient **readers**

Tags return 96-bit ID when queried by readers

<ID = e3f000e13431, desc = "bread basket", manufacturer = "...", ... >

Low-Level Sensing iGlove and iBracelet

13.56MHz reader, mote, power supply, antenna

Objects tagged on grasping surfaces

Low-Level Sensing WISP: Wireless ID & Sensing Platform

Passive RFID + Sensors

ü small stickersü battery-freeü room-range

 α -wisp (motion sensor wisp)

Low-Level Sensing The WISP Computer

ü multiplexing, aggregation
ü > 1 min power storage
ü light sensor

End-to-End Evaluation: ADL Form Filling

- •Tagged real home with 108 tags
- •14 subjects each did 12 of 14 ADL (65 instances) in arbitrary order
- •Subjects wore gloves, recorded activities
- •Given objects touched, infer activities

Simple Models Suffice

Activity	Prior Work	SHARP			
		(pred	cision/recall)		Legend
Personal Appearance			92/92		General solution
Oral Hygiene			70/78		
Toileting			73/73	\bigcirc	Point solution
Washing up	95/84		100/33		
Appliance Use			100/75		
Use of Heating			84/78		
Care of clothes and linen			100/73		
Making a snack			100/78		
Making a drink			75/60		
Use of phone			64/64		
Leisure Activity			100/79		
Infant Care			100/58		
Medication Taking			100/93		
Housework			100/82		

Creating Models Using Web-Mined Common Sense

Creating Models Shallow, Large-Scale Web Mining

Google("making tea") = 194,000

Google(kettle "making tea") = 30,100

prob = 30,100/194,000 = 15.5%

Performance quite good in practice

40,000 activities modeled in 5 weeks

The Challenges Revisited

Four scaling challenges:

- **ü** Designing low-level sensing
- u Designing model schema
- **ü** Creating models
- **ü** Pinpointing anomalies

Ultra-Dense Sensing: The Road Ahead

Ultra-Dense Sensing and Privacy

Variants of privacy Share no data Avoid sharing data with non-authorized parties Share data but control inferences

Practical approach: public policy + education Strong legal recourse Maximize perceived cost vs. benefit

Conclusions

Monitoring human activity a "disruptive" capability

Mix of enabling technologies within grasp

Very high density sensing is key

Ultra-dense sensing has implications beyond activity monitoring

Application 2 Managing Best Known Methods (BKMs)

- Optimal methods confer strategic advantage
 - I machine rooms, operating rooms, burger franchises
- I Managing BKMs involves:
 - Identifying them
 - I Training people to use them
 - I Monitoring their use
- I e.g. Intel manufacturing, UW anesthesiology


```
Application 3
Activity-Based Reminders
```

when I eat lunch remind me to take my pill

when I change baby's diapers remind me to apply cream

when I use the bathroom remind me to wash hands

when I use fab oven remind me to run debug sequence

Requirements

- functionalitylogging, rating, promptingscopethousands of activities
- timescale seconds to hours
- **speed** interactive time
- accuracy moderate to high (>>50%)
- **resolution** detect individual "steps"

Creating Models Mined Models Can Bootstrap Learning

Anomaly Detection Anomaly Localization as Error Correction

"Error Correcting Viterbi Parsing"

New algorithms fast even without explicit error models

Low-Level Sensing α-wisp: Read-Range and Response

1-bit accelerometer accurate @ 1-10 feet new tags @ 10-20 feet