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Introduction 
The ability to build computing systems that can observe, understand and act on day-to-
day physical human activity has long been a goal of computing research. Such systems 
could have profound conceptual and practical implications. Since the ability to reason 
and act based on activity is one of the central aspects of human intelligence, from a 
conceptual viewpoint such a system could cast light on computational models of 
intelligence. More tangibly, perhaps, machines that reason about human activity could aid 
humans in aspects of their lives that are today considered outside the domain of 
machines.  
 
Monitoring human activity is a basic aspect of reasoning about activity. In fact, such 
monitoring, whether of others or of ourselves, is something we all need to do: parents 
monitor children, adults monitor elderly parents, managers monitor teams, nurses monitor 
patients and trainers monitor trainees. Those following medication regimens, diets, 
recipes or task directions need to monitor themselves. Monitoring activity is not just 
ubiquitous, it also tedious and expensive. There is often no substitute for a dedicated, 
trained human monitor observing in detail those being monitored. Such extended 
observation of others results in fatigue in those observing, and resentment in those being 
monitored; these are classic symptoms, for instance, in caregiver-caretaker and manager-
worker relationships. Of course, the necessary constant involvement of humans also 
makes monitoring expensive. 
 
Tasks that are ubiquitous, tedious and expensive would usually be perfect candidates for 
automation. Machines don’t mind doing tedious work, and expensive problems motivate 
the corporations that build the machines. In fact, given the aging demographics of our 
society, systems that notify family automatically when their elderly relatives trigger some 
simple alarms, such as falling, not turning off the stove, or not turning of their hot water 
have begun to be commercially available. However, compared to the abilities of a live-in 
family member, who can monitor the elders’ competence in thousands of day-to-day 
activities, such systems only scratch the surface. In what follows, we describe in some 
detail a concrete application that could benefit from broad activity recognition 
capabilities, identify a crucial missing ingredient in existing activity recognizers, and 
describe how a new class of sensors, combined with emerging work in statistical 
reasoning, promises to significantly advance the state of the art by providing this 
ingredient.  
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An Application: The Caregiver’s Assistant 

 
Figure 1 An electronic Activities of Daily Living Form with checkmark added by the Caregiver’s 
Assistant. 
 
Caring for the elderly, whether in the capacity of a professional caregiver or as a family 
member is a common burden in most societies. Ensuring that the elder is able to perform 
crucial day-to-day tasks such as cooking, dressing, toileting and socializing is central to 
their wellbeing. Gerontologists have recognized this fact by developing a detailed list of 
activities, termed the Activities of Daily Living (ADL’s), and metrics for scoring 
performances of these activities, such that an elder’s score is accepted as an indicator of 
their cognitive health.  
 
Professional caregivers in the US are often required to fill in ADL forms on each visit to 
a significant number of their patients. Unfortunately, although the data they collect is 
important enough that resourcing decisions such as Medicaid payments depend on it, the 
data collected is often inaccurate. Inaccuracies arise because much of the data is collected 
by interviewing elders who may have strong motives to misrepresent facts, and also 
because the window of data collection is narrow relative to the period being evaluated. 
Given the increasing pressure on caregivers’ time, purely manual data collection seems 
unsustainable in the long run.  
 
The Caregiver’s Assistant system is intended to automatically fill out large parts of the 
ADL form automatically based on data collected from the elders’ home on a 24/7 basis. 
Such an application would hopefully not just increase the quality of data collected, but 
(since it is a constant monitoring system) also allow for useful but currently infeasible 
techniques such as proactive intervention. The form on the left of Figure 1 is a prototype 
form. Actual forms include activities from 23 broad classes such as “housework” and 
“hygiene”; these classes instantiate to tens of thousands of activities such as “cleaning a 
bathtub” and “brushing teeth”.  The underlying activity recognition system thus needs to 
be able to track thousands of activities in non-laboratory conditions to take substantial 
burden off the human. 
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The professional caregiver could, at any given time, be provided a version of this form 
with potentially troublesome areas highlighted. Having this form before a visit can help 
the nurse prepare better for the visit. During the visit, the information can help direct 
interaction towards the more important issues. Formative work with roughly one hundred 
caregivers from around the country indicates that such a system could be quite useful, at 
least for caregivers. 

Features for Discriminating Between Many Activities 

 
Figure 2 A typical activity recognition system. 
 
The process of recognizing mundane physical activities can be understood as mapping 
from raw data from sensors monitoring the world to a label denoting an activity. Figure 2 
shows how systems performing the mapping are traditionally structured. Feature 
selection modules typically work on high-dimensional, high-frequency data coming 
directly from sensors (such as cameras, microphones and accelerometers) to identify 
relatively small numbers of semantically higher-level features such as objects in images, 
phonemes in audio streams and motions in accelerometer data. Symbolic inference 
modules reason about the relationship between these features and activities in a variety of 
ways. The reasoning may include identifying ongoing activities, detecting anomalies in 
the execution of activities, and performing actions to help achieve the goal of the current 
activities.  
 
Both feature selection and inference techniques have been investigated extensively. 
Depending on the feature they seek to use, researchers can draw from extensive bodies of 
work: objects, faces, automobiles, gestures, edges and motion flows (to take examples 
from the computer vision community alone) each have dedicated sub-communities of 
researchers. On the other hand, once features are selected, an activity recognition system 
could choose from a very large space of model representations and inference techniques. 
These techniques differ, for instance, in whether they support statistical, higher-order, or 
temporal reasoning,  the degree to which they learn and the amount of human 

Symbolic Inference

raw sensor data

high-level features

activities

sensors

Feature Selection

Symbolic Inference

raw sensor data

high-level features

activities

sensors

Feature Selection



 4 

intervention they need in doing so, and the efficiency which they process various kinds of 
features, especially higher-dimensional ones. In Figure 2, we indicate the variety of 
selection and inference algorithms by stacks of boxes. 
 
However, this profusion of options has not translated into an activity inferencing system 
capable of recognizing large numbers of day-to-day activities in natural environments. A 
key underlying problem is that no existing combination of sensors and feature selector 
has been shown to detect robustly the features necessary to distinguish between 
thousands of activities. For instance, objects used during activities have long been 
thought to be a crucial discriminator. However, existing object recognition and tracking 
systems [6] tend not to work very well when applied to a large variety of objects in 
unstructured environments. Activity recognition systems based on tracking objects 
therefore tend to be customized for particular environments and objects, and restricted in 
their utility as general purpose day-to-day activity recognizers. Given that producing each 
customized detector is itself a research task, the goal of general-purpose recognition has 
not surprisingly remained unattained. 
 
A new class of small, wireless sensors to individual objects seems likely to provide a 
practical means of detecting objects used in many day-to-day activities [3, 4]. Given this 
stream of objects, recent work has shown that even simple symbolic inference techniques 
are sufficient for tracking the progress of these activities. 

Detecting Object Use with RFID-Based Sensing 

 
Figure 3 Radio Frequency Identification tags (left). A tagged toothbrush and toothpaste (right). 
 
A passive Radio Frequency Identification (RFID [1]) tag is a postage-stamp-sized 
wireless, battery free transponder that, when interrogated (via radio) by an ambient 
reader, returns a unique identifier (see Figure 2). Each tag consists of an antenna, some 
protocol logic and optional non-volatile memory. Tags use the energy of the interrogating 
signal to return a 64 to 128-bit identifier unique to each tag, and when applicable, data 
stored in on-tag memory. Short-range tags, which are inductively coupled, have a 2 to 30 
cm range, whereas long-range backscatter based tags have a 1 to 10 m range. Tags are 
available off the shelf for less than 50 cents a tag. Short range readers are priced in the 
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low hundreds of dollars, whereas long-range ones are in the low thousands. Current 
trends point to a step drop-off in price of both tags and readers in the next few years. 
 
If an RFID tag is attached to an object and the tag is detected in the vicinity of a reader, 
we can infer that the attached object is also present. Given their object-tracking abilities, 
RFID-based systems are currently under serious consideration for such commercial 
applications as supply chain management and asset tracking; existing uses include 
livestock tracking, theft protection in the retail sector and facilities management. The 
promise of RFID as viable system for tracking presence of large numbers of objects 
brings up the question of whether it can be used as the basis of a system for tracking the 
objects used by people whose activities we wish to track. Since a sensor can be attached 
to each object, we have, in principle an “ultra-dense” deployment of sensors that could 
allow each tagged object to report when it is in use. 
 
Neither short-range nor long-range RFID systems, as conventionally designed are quite 
up to the task of detecting object use in a manner useful for activity tracking. Short-range 
RFID readers are typically bulky handheld units (similar to barcode readers) that are 
intentionally “swiped” on tags that are to be read. It is clearly impractical to expect those 
whose activities are to be tracked (whether they are elders or medical student) to carry a 
scanner and swipe tagged objects in the middle of their day-to-day tasks. Long-range 
tags, on the other hand, do not require any explicit cooperation from those being tagged: 
readers in the corner of a room can detect tags within it. Unfortunately, since a 
conventional RFID tag simply reports the presence of a tagged object is in the field of a 
reader, and not its use, these readers cannot tell us when objects are being used either. 
They simply report the list of all objects in the room they are monitoring. As we describe 
below, however, each of these modalities can be re-engineered to usefully and 
unobtrusively detect object use, in addition to object presence. 
 
 
 
 

 
Figure 4 The iBracelet: Close-up (left) with quarter for comparison. In use (right). 
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Figure 4 shows how the short-range RFID reader can be adapted to become an 
unobtrusive object-use sensor. Essentially, the RFID reader, a radio with built-in 
processor, non-volatile memory and a power supply are integrated into a single bracelet 
called the iBracelet (on the left of the figure) [2]. The antenna of the RFID reader is built 
into the rim of the bracelet. When turned on, the bracelet scans for tags at 1 Hz at a range 
of 20-30 cm.  Any object, such as the water jar on the right of the figure, that has a tag 
within a few 10-15 cm of its grasping surface, can therefore be identified as having been 
touched. The data can either be stored on board (for later offloading through a data port) 
or immediately radioed off board. The bracelet can currently read for 30 hours between 
charges when storing data locally, and for roughly 10 hours when transmitting the data. 
Careful placement of tags on objects can reduce false negative rates, i.e., tags being 
missed. However, given the range of the bracelet, “accidental” swipes of objects are 
unavoidable. The statistical framework that processes the data should therefore be able 
cope with these. Early studies indicate that the iBracelet with 40-cent inductively coupled 
tags are a quite practical means of detecting object touch, and therefore object use. 
 
Some people or applications may deem wearing the bracelet an unacceptable 
requirement. WISP’s (Wireless Identification and Sensing Platforms [5]) may be a useful 
way of detecting object-use in these cases. WISP’s are essentially long-range RFID tags 
that have sensors integrated into them. These tags use incident energy from distant 
readers not only to return a unique identifier, but also to power their onboard sensor and 
communicate the current value of the sensor to the reader. For activity inferencing 
applications, so-called α-WISP’s (which are about the size of a large band aid; see Figure 
5), which have integrated accelerometers are attached to the objects whose movements 
are to be tracked. When a tagged object is used, more often than not the accelerometer is 
triggered, and the ambient reader notified. A single room, which may contain hundreds of 
tagged objects (most of them inactive at any given time), may be monitored by a single 
RFID reader. A complication with WISP’s is that the explicit correspondence between 
the person using the object and the object being used is now lost, so that higher-level 
inference software may need to track this correspondence implicitly if necessary. 
 

   
Figure 5 WISP's: Schematic (left), a single α-WISP (middle), a WISP on a coffee mug (right). 
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Inference on Object-Use Data 

 
Figure 6 A simple probabilistic model for making tea. 
 
Given the sequence of objects detected by RFID-based sensors, it is the job of the 
inference system to infer the activities happening. The inference system relies on a model 
translating from observations (in this case, the objects seen) to the activity label. Recent 
work [4] has shown that even very simple statistical models of activities are sufficient to 
distinguish between dozens of activities performed in a real home. Figure 6 shows the 
model for making tea as an example. Each activity is represented as a linear sequence of 
steps. Each step has a specified average duration, a set of objects likelihood to be seen in 
that step, and the probability that one of these objects will be seen in an observation 
window. In the figure, the first step (corresponding to boiling tea) takes five minutes on 
average; in each one-second window, there is a 40-, 20- and 30% chance respectively of a 
kettle, stove or faucet being used. Experiments in a real home with 14 subjects, each 
performing a randomly selected subset of 66 different activities selected from ADL 
forms, and using activity models constructed by hand to automatically classify the 
resulting data, have yielded above 70% (and often close to 90%) accuracy in activity 
detection. 
 
Although the models are simple, it is impractical to model tens of thousands of activities 
by hand. The fact that the features to be recognized are English words representing 
objects, and that the label to be mapped to is an English phrase (such as “making tea”) 
lead to an interesting observation: the processing of building a model is essentially a 
process of translating probabilistically from English phrases to words. Recent work [7] 
has used this observation to completely automatically extract these translations using 
word co-occurrence statistics from the text corpora such as the web. Intuitively, if of 1 
million web pages that mention “making tea”, 600,000 mention “faucet”, these systems 
accept 60% as the rough probability of using a faucet when making tea. These crude 
“commonsense” models can then be used as a basis for building customized models for 
each person by applying machine learning techniques to data generated by that person. 
Experiments on the above dataset have shown that these completely automatically 
learned models can recognize activities correctly roughly 50% of the time. Analysis of 
these corpus-based techniques has also provided indirect evidence that object-based 
models should be sufficient to discriminate between thousands of activities. 

tµ = 5 min tµ = 2 min tµ = 30s

kettle stove faucet cup teabag milk sugar

0.4 0.2 0.3 0.6 0.2 0.4 0.4

tµ = 5 min tµ = 2 min tµ = 30stµ = 5 min tµ = 2 min tµ = 30s

kettle stove faucet cup teabag milk sugar

0.4 0.2 0.3 0.6 0.2 0.4 0.4
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Conclusions 
Monitoring day-to-day physical activity is a tedious and expensive task performed by 
most humans. Automating the monitoring therefore has the potential of tangibly easing 
the lives of many people. Traditional approaches to activity recognition have not been 
successful at monitoring large numbers of day-to-day activities in unstructured 
environments, partly because of their inability to identify sufficiently discriminative high-
level features robustly. A new family of sensors, based on Radio Frequency 
Identification, is able to simply and accurately identify most of the objects used in 
activities. Given this rich stream of features, even simple statistical models can classify 
large numbers of activities with good accuracy. Further, these models are simple enough 
that they can extracted automatically from massive text corpora such as the web and 
customized on observed data to good effect. 
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