Sustainable Development through the Principles of Green Engineering

Julie Beth Zimmerman, PhD Office of Research and Development, EPA Civil Engineering, University of Virginia

Since going to bed (assume 9 pm), how many people has the global population increased by?

- a) 2,336
- b) 15,675
- c) 50,604
- d) 101,434

Since eating breakfast (assume 9 pm), how many people has the global population increased by?

- a) 2,336
- b) 15,675
- c) 50,604
- d) 101,434

What was the average fuel efficiency for automobiles in the US in 2004?

- a. 12
- b. 21
- c. 24
- d. 33

What was the average fuel efficiency for automobiles in the US in 2004?

- a. 12
- b. 21
- c. 24
- d. 33

What was the fuel efficiency of Henry Ford's Model T?

- a. 5
- b. 8
- c. 12
- d. 25

What was the fuel efficiency of Henry Ford's Model T?

- a. 5
- b. 8
- c. 12
- d. 25

What is the percentage breakdown of raw materials extracted from the Earth end up in product versus end up as waste?

- a. 70 (product) 30 (waste)
- b. 50 50
- c. 10 90
- d. 6 94

What is the percentage breakdown of raw materials extracted from the Earth end up in product versus end up as waste?

- a. 70 (product) 30 (waste)
- b. 50 50
- c. 10 90
- d. 6 94

How many synthetic chemicals (not known or manufactured before 1940) are in your body today?

- a. 14
- b. 53
- c. 167
- d. 239

How many synthetic chemicals (not known or manufactured before 1940) are in your body today?

- a. 14
- b. 53
- c. 167
- d. 239

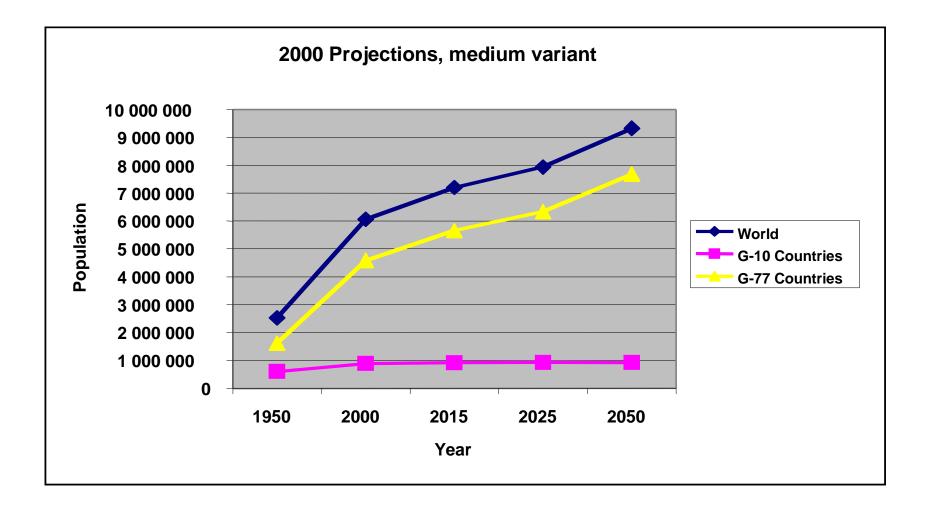
What is sustainability?


Meeting the needs of the current generation without inhibiting the ability of future generations to meet their own needs.

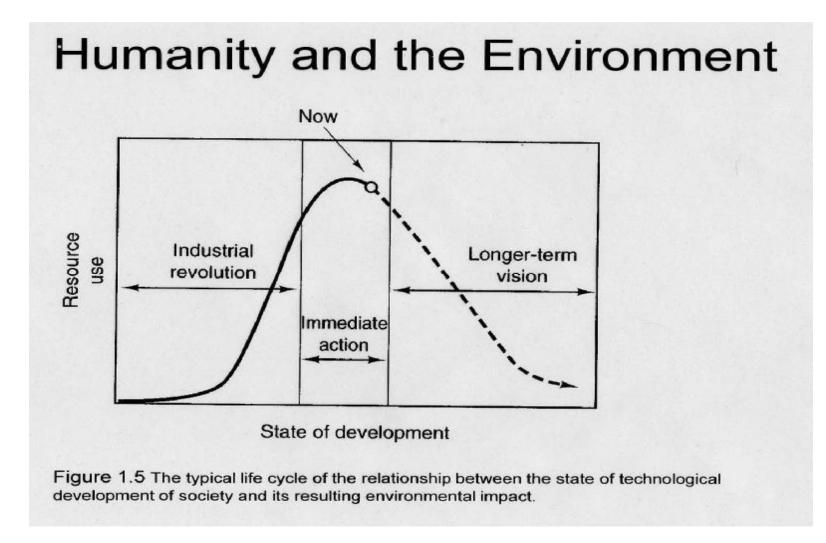
Brundtland Commission, 1987

Major Challenges to Sustainability

- \rightarrow Population
- \rightarrow Water
- \rightarrow Energy
- \rightarrow Global Change
- \rightarrow Resource Depletion
- \rightarrow Food Supply
- \rightarrow Toxics in the Environment
- \rightarrow Socio-political
- \rightarrow Economics and the Market
- \rightarrow Traditional design


A billion here a billion there...

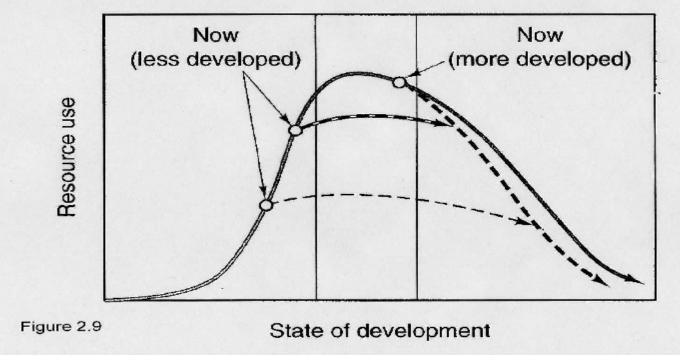
(1998)


Population Trends

U.N. World Population Prospects, 2000 Revision

Population

- → Empirical data shows that increased quality of life correlates with sustainable population control.
- → Increased quality of life, however, has historically resulted in increased damage to the biosphere and the earth's ability to sustain life.


Graedel and Allenby, Industrial Ecology, 1995

Population

- → The challenge: How to increase quality of life while minimizing detrimental effects to human health, the environment and the biosphere.
- → The solution: Engineers through sustainable design can contribute in very real terms to enhancing prosperity both in the developed and developing world.

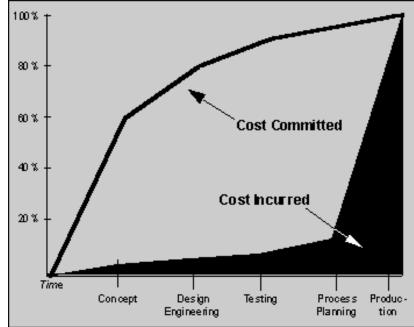
Green Engineering: The How of Sustainability

Technology & Industry Development - Environment Relationship

Graedel and Allenby, Industrial Ecology, 1995

What is Green Engineering?

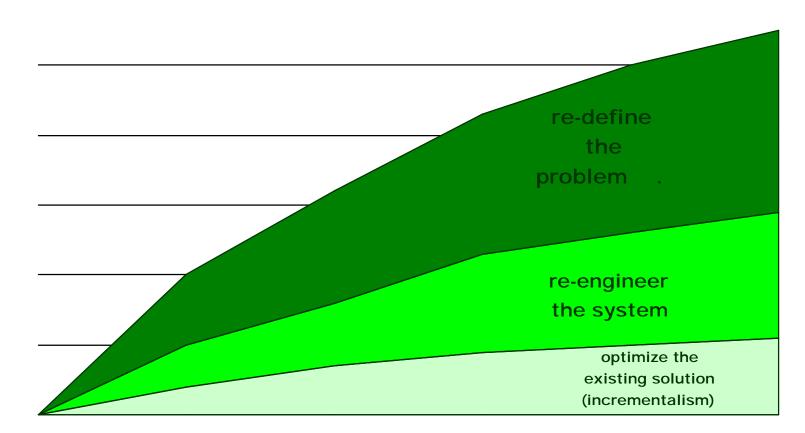
- \rightarrow Design, discovery, and implementation
- \rightarrow Molecules, products, processes, systems
- \rightarrow Maximize Inherency
- → Maximize mass, energy, time, and space efficiency


Goals of Principles of Green Engineering

 \rightarrow Principles of DESIGN

- \rightarrow Apply across scales of design
 - → Molecular architecture to construct chemical compounds
 - → Product architecture to create a cell phone
 - → Urban architecture to build a city

Impacts of Design Decisions


- \rightarrow For a typical product, 70% of the cost of development, manufacture and use is determined in its design phase.
- → Integrating environmental considerations into the upfront product design can
 - → increase efficiency
 - → reduce waste of materials and energy
 - → reduce costs

Source: Business Week 4-30-90

Not just how you design but what you design

Schematic of potential benefits vs. investments

investments (i.e., time, money, resources, energy)

Goals of Principles of Green Engineering

- \rightarrow Principles of DESIGN
- \rightarrow Framework
 - \rightarrow Applicable
 - → Effective
 - → Appropriate
- \rightarrow Apply across disciplines
 - → Chemical, Civil, Environmental, Mechanical, Systems...

How were the Principles of Green Engineering developed?

- \rightarrow Identify examples of successful engineering that moves towards sustainability
 - \rightarrow various disciplines
 - → various scales
- \rightarrow Elucidate the underlying principle(s) embedded in the examples.
- → See if the embedded principles are applicable across scales and across disciplines
 - → even if not generally realized

How to think about Principles of Green Engineering?

- \rightarrow Not Rules, commandments, or natural laws.
- \rightarrow Can be viewed as performance parameters
- \rightarrow Need to be optimized
 - → Synergies
 - → Trade-offs
- \rightarrow Need to be applied in context
 - \rightarrow Vary with innovation, creativity
 - → Vary with culture, society
- \rightarrow Often synergistic with traditional design metrics.
 - → Quality
 - → Safety
 - → Cost effective

Fundamental Issues in applying the Principles

 \rightarrow Inherency

Inherently benign

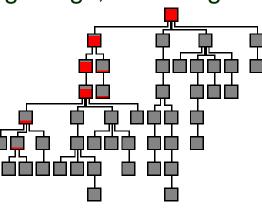
\rightarrow Circumstantial

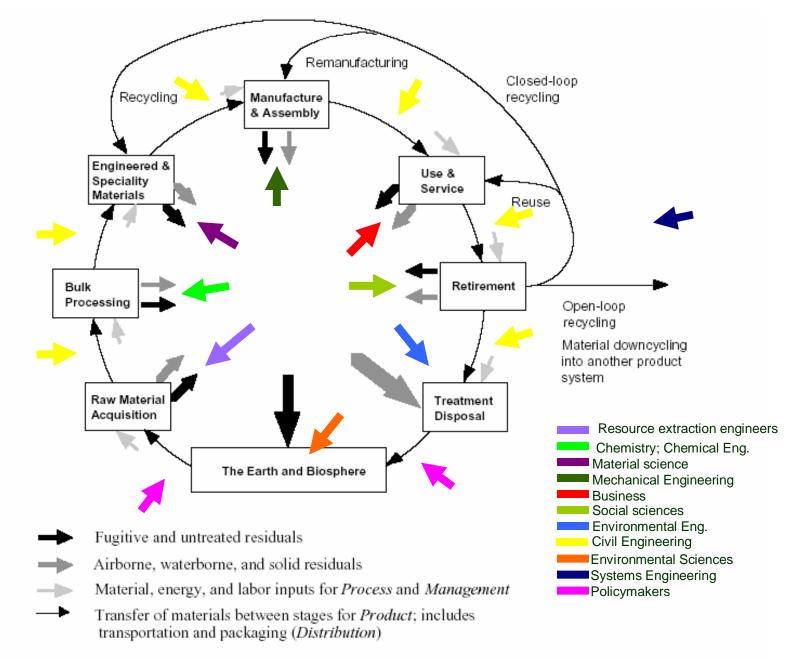
- .. Use
- ... Exposure
- " Handling
- " Treatment
- ^{...} Protection
- " Recycling
- " Costly

\rightarrow Inherent

- Molecular design for reduced toxicity
- Reduced ability to manifest hazard
- Intrinsic safety from accidents or terrorism
- Increased potential profitability
- " Cannot fail

Fundamental Issues in applying the Principles


 \rightarrow Inherency



 \rightarrow $\,$ Life cycle foundation across all principles.

INPUTS	OUTPUTS
raw materials —	waste heat solid waste emissions to air
energy/fuels	emissions to all emissions to water usable products

→ Holistic or so-called "systems thinking" should be applied to avoid the unintended consequence of doing the wrong things, but doing them very well.

Source: Gregory A. Keoleian and Dan Menerey, Life Cycle Design Guidance Manual (Cincinnati: U.S. EPA Risk Reduction Engineering Lab, 1993), 14.

FIGURE 7: THE PRODUCT LIFE CYCLE SYSTEM

The 12 Principles of Green Engineering

- 1. Green Chemistry
- 2. Prevention rather than treatment.
- 3. Design for separation.
- 4. Maximize mass, energy, space, and time efficiency.
- 5. "Out-pulled" rather than "input-pushed".
- 6. View complexity as an investment.
- 7. Durability rather than immortality.
- 8. Need rather than excess.
- 9. Minimize material diversity.
- 10. Integrate local material and energy flows.
- 11. Design for commercial "afterlife".
- 12. Renewable and readily available.

Advancing Sustainability

- \rightarrow Science and technology is fundamental and essential
- → Global dialogue based on integrating the best and most appropriate knowledge, methodologies, techniques, principles and practices
 - → Developing nations typically have a long history of practical innovation and successful application of indigenous knowledge systems
 - → Science and Technology
 - → Economics and Commerce
 - → Governance

Science and Technology

\rightarrow Pharmaceuticals

- → Over 120 pharmaceutical plant-derived products and 75% were discovered by examining the use of plant species in traditional medicine
- → Shaman Pharmaceuticals pioneered a novel approach to drug discovery while maintaining a commitment of reciprocity to the indigenous cultures.
- → Shaman has brought two products into clinical trial within 24 months of identification through indigenous knowledge.
 - → Compare to most major pharmaceutical companies where 1,000,000 relevant substances are screened for each new medicine, the associated cost is \$897 million, and the typical time to trial is 4.5 years (DiMasi, 2003)

Science and Technology

\rightarrow Water Supply and Treatment

- \rightarrow Rain water harvesting
- → Natural coagulants
- \rightarrow Cooling technologies
 - \rightarrow Evaporative

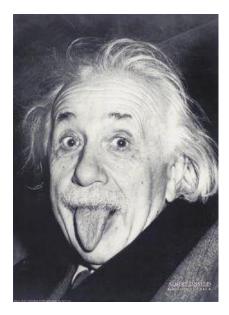
Science and Technology

\rightarrow Passive Solar Design

- \rightarrow Waste to energy
 - → Biogas
- \rightarrow Building Materials
 - \rightarrow Adobe
 - → Rammed earth
 - → Straw

Commerce and Governance

- \rightarrow Microfinancing
- \rightarrow Cooperative businesses
- \rightarrow Local economic development strategies
- \rightarrow Natural system valuation
- \rightarrow Quality of life indicators


Addressing sustainability challenges through S&T

- → Within the currently industrialized nations as well as those developing nations whose path to development will be most consequential for the environment and society
- → Essential that these design principles be incorporated systematically in the next generation of products, processes, and systems.
- → Consider and utilize both a high level understanding of complex systems as well as an incorporation of simple elegance found in millennia of experience and tradition.

Science, technology, and policy - looking ahead...

\rightarrow Historical

- \rightarrow Medicines
- \rightarrow Space exploration
- \rightarrow Computing
- $\rightarrow Future$
 - \rightarrow Essential to any path forward

"Problems cannot be solved at the same level of awareness that created them."